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Chapter-I 
Circulation and Vorticity 

 

Circulation:  

Definition: 

Circulation is defined as a macro-scale measure of rotation of fluid. 

Mathematically it is defined as a line integral of the velocity vector around a 

closed path, about which the circulation is measured.  

Circulation may be defined for an arbitrary vector field, say, B
r

.  Circulation ‘ BC ’ of 

an arbitrary vector field B
r

 around a closed path, is mathematically expressed as 

a line integral of B
r

 around that closed path, i.e., ldBCB

rr
∫= .   . 

In Meteorology, by the term, ‘Circulation’ we understand the circulation of 

velocity vector.  Hence, in Meteorology circulation around a closed path is given 

by                        C  =   ∫V . dl   ....(C1.1). From this expression it is clear that 

circulation is a scalar quantity. 

 Conventionally, sign of circulation is taken as positive (or negative) 

for an anticlockwise rotation (or for a clockwise rotation) in the Northern 

hemisphere. Sign convention is just opposite in the Southern hemisphere.  Since 

we talk about absolute and relative motion, hence we can talk about absolute 

circulation and relative circulation. They are respectively denoted by aC and  rC  

respectively and are defined as follows:  

  aC =  ∫ aV . dl   …. (C1.2) 

and     C r  =  ∫ rV . dl  …. (C1.3) 

Where    aV  and rV  are the absolute and relative velocities respectively. 
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Stokes Theorem:- 

It states that the line integral of any vector  B
r

 around a closed path is 

equal to the surface integral of nB.×∇  over the surface ‘S’ enclosed by the 

closed path, where  n̂  is the outward drawn unit normal vector to the surface ‘S’. 

So,   dsnBdlB ˆ)( ⋅×∇=⋅ ∫∫∫
r

.  

The Circulation Theorems: 
Circulation theorems deal with the change in circulation and its cause(s).  

For an arbitrary vector field, B
r

 the circulation theorem states that the time 

rate of change of circulation of B
r

 is equal to the circulation of the time rate of 

change of B
r

, i.e.,  

ld
dt
BdldB

dt
d r

r
r

.. ∫∫ =  …………(C1.4) 

This theorem may be applied to the absolute velocity vector ( aV
r

) as well 

as to the relative velocity vector ( rV
r

). 

Kelvin’s Circulation theorem: 
 It is the circulation theorem, when applied to the absolute velocity 

( aV
r

) of fluid motion.  

 So according to Kelvin’s Circulation theorem, 

 
dt
Cd aa = dl

dt
Vd aa ⋅∫    …..(C1.5). 

Proof: We know that aC =  ∫ aV . dl  

So, 
dt
Cd aa = ld. Va

rr
∫dt

da  

Or, 
dt
Cd aa = )(.. ld

dt
d

Vld
dt
Vd a

a
aa

rrr
r

∫∫ +  

Or, 
dt
Cd aa = aaa

aa VdVld
dt
Vd rrr
r

.. ∫∫ +  

Or, 
dt
Cd aa = )

2
.

(. aa
a

aa VV
dld

dt
Vd

rr
r

r

∫∫ +  
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Or, 
dt
Cd aa = ld

dt
Vd aa

r
r

.∫ , as the line integral of an exact differential around a 

closed path vanishes. 

Conventionally, 
dt
Cd aa  or 

dt
dCr are known as acceleration of circulation 

(absolute or relative). 

So, in Meteorology, circulation theorem simply states that the acceleration 

of circulation is equal to the circulation of acceleration.  

A corollary to Kelvin’s circulation theorem:  

We know that equation for absolute motion is given by, 

Fgp
dt
Vd aa

rrr
r

++∇−= ∗

ρ
1  ……….(C1.6), where symbols carry their usual 

significances. 

 Here, ⎟
⎠
⎞

⎜
⎝
⎛−=∗

r
r

r
GMg

r
r

2  is the gravitational attraction exerted by earth on a 

unit mass with position vector, rr , with respect to the centre of the earth. It is clear 

that ∗gr  is a single valued function of ‘ r ’. Also it is known that all force fields 

which are single valued functions of distance ( r ), are conservative field of forces. 

(‘Dynamics of a particle’, by S.L.Lony). Hence, ∗gr  is a conservative force field. It 

is also known that work done by a conservative force field around a closed path 

is zero.  

Hence, ∫ =∗ 0. ldg
rr ….(C1.7). 

Again, from Stoke’s law we know that for a vector field, B
r

 ,  

∫ ∫∫ ×∇=
s

dsnBldB ˆ..
rrrr

……….(C1.8) 

Where S is the surface area enclosed by a closed curve, around which the 

circulation of B
r

is measured, and ‘ n̂ ’ is the outward drawn unit vector normal to 

the surface area S.  

So, ∫∫∫ ∫∫
∇×∇

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇−×∇=∇−

ss

dsnpdsnpldp ˆ.ˆ.1.1
2ρ

ρ
ρρ

rr
rrrr

……….(C1.9) 
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Hence, using (C1.6), (C1.7) and (C1.9) in (C1.5), we have for friction less 

flow, 

dt
Cd aa = ∫∫

∇×∇

s

dsnp ˆ.2ρ
ρ

rr

…………..(C1.10) 

We know that in a barotropic atmosphere the density, ρ , is a function of 

pressure only, i.e., ρ  can be expressed as, ρ = )( pf . 

 Hence, ppf ∇′=∇
rr

)(ρ 0
rrr

=∇×∇⇒ pρ , where, 0
r

is null vector.  

Therefore, for a frictionless barotropic flow, 
dt
Cd aa =0…….(C1.11). This is a 

direct corollary to the Kelvin’s theorem. Hence from Kelvin’s circulation theorem it 

may be stated that for frictionless flow change in absolute circulation is solely due 

to the baroclinicity of the atmosphere. 

Solenoidal vector and Jacobian: 

Suppose, BA,  are two scalar functions. Then, Jacobian of these 

functions, is denoted by ),( BAJ  and is given by,  

),( BAJ =

y
B

x
B

y
A

x
A

∂
∂

∂
∂

∂
∂

∂
∂

= BAk ∇×∇
rr

.ˆ . Also, BA ∇×∇
rr

 is called BA, Solenoidal 

vector and is denoted by, BAN ,

r
. 

So, the vertical component of solenoidal vector is the Jacobian. 

Now, it will be shown that, ),( BAJ  represents change in ),( yxA along the 

isolines of ),( yxB and vice-versa.  

We have, θsin),( BABABAJ ∇∇=∇×∇=
rrrr

, where,θ is the angle between 

A∇
r

  and B∇
r

. We know that A∇
r

, B∇
r

 are normal to the isolines of 

BA, respectively. Hence the angle between isolines of BA,  is also θ. If α is the 

angle between isolines of B and A∇
r

, then θ = 900 - α. So, αcos),( BABAJ ∇∇=
rr

. 

Now, αcosA∇
r

 represents the magnitude of the projection of A∇
r

on the isoline 
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of B .  As A∇
r

 represents change of A , hence it follows that αcosA∇
r

 represents 

the change of A  along the isolines of B . Thus, for a given gradient of B , ),( BAJ  

represents the change of A  along the isolines of B . Similarly, it can be shown 

that for a given gradient of A , ),( BAJ  represents the change of B  along the 

isolines of A .  

The above has been shown in figure 1.1. From this figure it is clear that as 

the magnitude of α increases, the magnitude of the change in A (Or B ) along the 

isolines of B (Or A ) increases. Hence, the magnitude of the Jacobian increases 

as the angle between the isolines decreases. It is maximum when 00=θ and is 

zero when 090=θ .  

Barotropic and Baroclinic Atmosphere: 
Here we shall discuss the salient features of the solenoid vector. 

Solenoid vector, denoted by   PN ,ρ   or  pTN ,   is given by 

                          pN P ∇×∇= ρρ , …. (C1.12)  or          

                          pTN ,

r
=   pT ∇×∇ …. (C1.13). 

When the atmosphere is barotropic, then, there is no horizontal 

temperature gradient.  Hence in such an atmosphere, 0̂=∇T
r

 [ 0̂   is the null 

vector].  

Hence in such an atmosphere, ( ) 0̂=∇×∇ Tp
p
R rr

. 

  pTN ,   = 0̂  .    Hence      llT∇ P∇    .  

Hence in such case, the isobars and isotherms (or the  isolines of density   

ρ ) are parallel to each other.  This has been shown in fig.1.2.  

But if the atmosphere is not barotropic, then these lines are no longer 

parallel, rather they intersect each other.  Now, when they intersect, they form 

small rectangles like ABCD (shown in fig 1.3).  Such rectangles are called 

solenoid.  It is shown below that the magnitude of Solenoid Vector is equal to the 

number of solenoids formed in unit area in the vertical plane. 
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Area of a single solenoid ABCD = 1ha , where a is the length of the side AB 

and 1h is the length of the altitude DE, as shown in figure 1.3. 

Now, θsin1 bh = , where, b is the length of the side AD and θ  is the angle 

between the sides AB and AD. 

Hence, area of the solenoid ABCD = θsinba . 

Now, 
θ

θθ
sin
1sin11sin

12 bahh
pTpT ==∇∇=∇×∇
rrrr

, where, 2h is the length 

of the altitude BF. 

So, area θsinba  is contained in 1 solenoid. 

Hence, unit (= 1) area is contained in  
θsin

1
ba

 numbers of solenoid. So, 

the magnitude of above solenoidal vector represents the number of solenoids in 

unit area in a vertical plane.  

Practically the angle between isobar and isotherms gives a qualitatively 

measure of baroclinicity of the atmosphere.  Because as the angles are smaller, 

the isobars and isotherms are very close to be parallel to each other i.e. the 

atmosphere is mostly barotropic.  But as the angle increases, the isotherms and 

isobars become far away from being parallel to each other i.e. the atmosphere is 

mostly baraclinic.  Also it is worth to note that as the angles between isotherms 

and isobars are smaller, numbers of solenoids are also smaller and if angle 

increases, the numbers of solenoids are also increases. These have been shown 

in figures (1.4 & 1.5).From the figures 1.4 and 1.5 we can see how the increase 

in angle between isobars and isotherms can lead to increase in change in T 

along the isobars.  

So in the day to day charts to examine the qualitative measure of 

baroclinicity we need to estimate only the angle between isobars and isotherms 

or in the constant pressure chart we need to examine the angle between contour 

lines and the isotherms. 
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Bjerknees Circulation Theorem: 
 Kelvin’s circulation theorem tells us about the change of absolute 

Circulation.  But it is more important to know about the change of circulation with 

respect to the earth.  Hence it is more important to know the change of relative 

circulation.  

Bjerkness circulation theorem tells us about the change in relative 

circulation 

According to Bjerkness circulation theorem, we have 

dt
dC

dt
dC ar = -2

dt
dSEΩ                          ………………….. (C1.14) 

Proof: We know that, rVVa
rrrr

×Ω+= . 

( )∫∫∫ ×Ω+=⇒ ldrldVldVa

rrrrrrr
...  

∫∫ ×Ω×∇+=⇒
S

ra dsnrCC ˆ).( rrr
 (Stoke’s theorem used for 2nd line integral) 

∫∫ Ω+=⇒
S

ra dsnCC ˆ.2
r

 

Now, φsin)ˆ,(cosˆˆ. Ω=ΩΩ=Ω nnn
rrr

, where, φ  is the latitude of the area 

element ds and Ω=Ω
r

. 

Hence, E
S

ra SSindsCC Ω=Ω+=⇒ ∫∫ 22 φ  

Where, ∫∫ == dSdSS EE  Sinφ       

and ds Sinφ   is the area of the projection of ds on the equatorial plane. 

The first term 
dt

dCa , have already been discussed in the Kelvin’s circulation 

theorem.  Now we shall discuss the 2nd term   -2
dt

dSEΩ  .  

Considering the effect of the 2nd term independently the Bjerkness 

circulation theorem gives us 

)(2 112212 φφ SinSSinSCC rr −Ω−=− …………………………(C1.15) 

Where 1rC  =  Initial relative circulation;  
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           2rC  =  Final relative circulation 

  1S  = Initial area enclosed by the closed path 

2S  = Final area enclosed by the closed path 

   1φ  = Initial Latitude 

    2φ  = Final Latitude 

 

Thus the above equation tells us that the change in relative circulation 

may be due to  

(i) change in area enclosed by the closed path  

(ii) change in latitude 

(iii) Non uniform vertical motion superimposed on the circulation  

• Effect of the change in area enclosed by the closed path on the 

change in relative circulation : 

If the area ‘S’ enclosed by the closed path increased from S1 to S2 , 

remaining at the same latitude ’φ ’, then the resulting change in relative 

circulation is given by 

0)(2 1212 <−Ω−=− SSSinCC rr φ , since,  S2 > S1.  

Thus Cyclonic circulation decreases as the area enclosed by the closed 

circulation increases. Physically it may be interpreted as follows: 

Area enclosed by a closed circulation increases if and only if the 

divergence increases or convergence decreases. Then due to the Coriolis force 

the stream line turn anti-cyclonically or the already cyclonically turned 

streamlines turn less cyclonically. As a result of which cyclonic circulation 

reduces. Similarly due to convergence when the area enclosed by the circulation 

decreases, the cyclonic circulation increases.   

• Effect of the change in latitude on the change in relative circulation : 

Now suppose a circulation moves from a lower latitude 1φ  to a higher 

latitude 2φ , without any change in the area enclosed by the circulation.  Then the 

resulting change in the relative circulation is given by 

 0)(2 1212 <−Ω−=− φφ SinSinSCC rr  
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Since  12 φφ SinSin >  

Hence a circulation loss its cyclonic circulation as it moves towards higher 

latitude.  

Similarly it can be shown that when a cyclonic circulation moves towards 

lower latitude, then it gains cyclonic circulation.  

• Effect of imposition of non uniform vertical motion on the change in 

relative circulation.  

Now consider a different situation, when neither the area enclosed by the 

circulation changes nor the cyclonic circulation moves, but non uniform vertical 

motion is applied to the closed circulation.  Then the inclination of the plane of 

rotation of circulation with the equatorial plane changes, (shown in figure 1.6)  as 

a result of which  ES    changes which leads to a change in Cr. This effect is 

known as  TIPPING EFFECT.  

 

 A possible explanation of sea/land breeze and thermally direct 

circulation using Kelvin’s circulation Theorem: 

 Sea breeze takes place during day time when ocean is 

comparatively cooler than land.  Hence temperature  increases   towards land 

and also we know that temperature decreases upward.  (i.e. increased 

downward).  Thus the temperature gradient   T∇
r

is directed downward to the 

land.  For the shake of simplicity we assume that pressure over land and sea is 

same, but it increases downward.  Hence pressure gradient p∇
r

 is directed 

downward.  as shown in figure 1.7. Hence Tp ∇×∇
rr

gives the circulation in the 

direction from p∇
r

 to T∇
r

.  Also the change in circulation pattern is given by 

Tp ∇×∇
rr

.   Hence if initially there was no circulation, then the above mentioned 

pressure and temperature pattern will generate a circulation directed from p∇
r

 to 

T∇
r

, which gives low level flow from ocean to land and in the upper level from 

land to ocean.  This is nothing but sea breeze.  Similarly land breeze and any 

thermally driven circulation pattern may be explained qualitatively. 



Lecture notes on Dynamic Meteorology prepared by Somenath Dutta for Advanced (Revised) 
Meteorological training course-Phase II. 
 

 10

VORTICITY:  

Vorticity is a micro scale measure of rotation.  It is a vector quantity.  

Direction of this vector quantity is determined by the direction of movement of a 

fluid, when it is being rotated in a plane. Observation shows that when a fluid is 

being rotated in a plane, then there is a tendency of fluid movement in a direction 

normal to the plane of rotation (towards outward normal if rotated anti clockwise 

or towards inward normal if rotated clockwise).  Thus due to rotation in the XY 

plane (Horizontal plane)  fluid tends to move in the k̂  direction (i.e. vertical), due 

to rotation in the  YZ plane (meridional vertical plane)fluid tends to move in the î  

direction (East West) and due to rotation in ZX plane (zonal vertical plane) fluid 

tends to move in the ĵ direction (N-S). 

Thus vorticity has three components.  Mathematically it is expressed as 

ζηξ kjiV ˆˆˆ ++=×∇  ….(C1.16),  

where,  
y
u

x
v

x
w

z
u

z
v

y
w

∂
∂

−
∂
∂

=
∂
∂

−
∂
∂

=
∂
∂

−
∂
∂

= ζηξ ;;   ....(C1.17). 

In Meteorology, we are concerned about weather, which is due mainly to 

vertical motion and also only the rotation in the horizontal plane can give rise to 

vertical motion.  So, in Meteorology, by the term vorticity, only the k̂  component 

of the vorticity vector is understood. Hence, throughout our study only k̂  

component is implied by vorticity.  

Thus, hence forth, vorticity = 
y
u

x
v

∂
∂

−
∂
∂

=ζ ….(C1.18). 

Relation between circulation and vorticity: 
 We know that circulation and vorticity both are measures of 

rotation. Hence it’s natural that there must be some relation between them. We 

know that, circulation is given by, ldvC
rr

∫= .   

Hence, using Stokes theorem we have,   ∫∫∫∫∫ =⋅⋅×∇=⋅= dsdskvdlvC ζ     

(As in the present study, rotation is in the horizontal plane, hence, kn ˆˆ =  )..  
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Hence, ζ=
ds
dc  …..(C1.19).Thus, vorticity is the circulation per unit area. 

Vorticity for solid body rotation 

 Let us consider a circular disc, of radius ‘a’, rotating with a constant 

angular velocity  ω  about an axis passing through the centre of the disc, as 

shown in figure 1.8  

Then the circulation of the disc  = cldv =⋅∫
rr   (say) 

Now tangential component of   av ω=   

                                                And  θaddl =  

ωπθωθω
ππ

∫∫ ===∴
2

0

222

0

2 2 adadac  

Vorticity= Circulation/Area   = ω
π
π 22

2

2

=
a

wa ….(C1.20) 

Thus for Solid body rotation, the vorticity is twice the angular velocity i.e. 

 2 ω.  

Relative vorcity and the Planetary Vorticity 

 Relative vorticity =       
y
u

x
vVK r ∂

∂
−

∂
∂

==×∇⋅ ζ  

 To understand the Planetary Vorticity, we consider an object placed 

at some latitude on the earth’s surface.  Consider the meridional circle passing 

through the object shown in figure 1.9 

 Then as the Earth rotates about its axis, the object executes a 

circular motion (dashed circle in the fig) with radius φcosa . 

 Now the Circular motion executed by the object is analogous to the 

solid body rotation.  Hence the vorticity of the object = 2 x local vertical 

component of angular velocity =  fSin =Ω φ2 .  

Now this vorticity is solely due to the rotation of the planet earth.  Hence it 

is known as planetary vorticity.  It is to be noted that it is also the coriolis 

parameter. 
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Sum of relative vorticity and planetary vorticity is known as absolute 

vorticity and is denoted by  ‘ aζ ’ 

 Hence    aζ = f+ζ ……(C1.21) 

Relative vorticity in natural co-ordinate:  

 In natural co-ordinate (s,n,z), we know ≡∇
r

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

+
∂
∂

z
k

n
n

s
t ˆˆˆ , 

where, knt ˆ,ˆ,ˆ are unit tangent, unit normal and unit vertical vector respectively. 

Hence, the relative vorticity is given by 

               
n
vvKtv

z
k

n
n

s
tk s ∂

∂
−=×⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

+
∂
∂

= ˆˆˆˆ.ˆζ ……(C1.22) 

Where, v is the tangential wind speed, sK  is the streamline curvature and  

n
v
∂
∂  is the horizontal wind shear across the stream line. The first term svK of the 

above expression is known as curvature vorticity and the second term 
n
v
∂
∂

− is 

known as Shear vorticity.  

Potential vorticity 

 To understand the concept of Potential vorticity, first we may refer 

to the popular circus play, where a girl is standing at the centre of a rotating disc.  

As the girl stretches her arm, the disc rotates at a slower rate and as she 

withdraws her arms the disc rotates at a faster rate.  Generally this example is 

referred in solid rotation to illustrate the conservation of angular momentum.  This 

example hints us to search a quantity in the fluid rotation, which is analogous to 

the angular momentum in solid rotation. 

 For that we consider an air column of unit radius.  Now, consider 

that the air column shrinks down i.e. its depth decreases.  As it shrinks down, its 

radius increases and then as per the above example column will rotate at a 

slower speed.  Also if the air column stretches vertically i.e. if its depth increases, 

then its radius decreases and rate of rotation increases 
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 So, it’s clear that the rate of rotation of the air column increases or 

decreases as its depth increases or decreases. 

 Thus for a rotating air column, we can say that the rate of rotation is 

proportional to the depth of the air column.   

 Now for fluid motion rate of rotation and vorticity are analogous 

 ∴     Vorticity ∝   Depth 

Vorticity/Depth  = constant 

Thus in the fluid rotation the quantity (Vorticity/Depth) remains constant as 

in the solid rotation angular momentum remains constant.  So this quantity is 

analogous to the angular momentum.  It is known as potential vorticity. 

Therefore, Potential vorticity of an air column  

= 
Depth

vorticityAbsolute =      
h

f+ζ ……(C1.23) 

 

THE VORTICITY EQUATION: 
 

This equation tells us about change in vorticity and the possible 

mechanisms for vorticity production or destruction.  This equation is derived from 

the equation of horizontal motion. 

Horizontal equation of motion may be re-written as 

F
z

V
wVkfpK

t
V H

HHHH
H

r
r

rrr
r

+
∂
∂

−×+−∇−∇−=
∂
∂ ˆ)(1 ζ

ρ
…….(C1.24) 

Performing ( ×∇Hk
r

.ˆ  ) on both sides of (C1.24), we obtain, 

[ ] Fk
z

VwkVkfkpk
t H

H
HHH

HH
rr

r
rrr

rr

×∇+
∂
∂

×∇−×+×∇−
∇×∇

=
∂
∂ .ˆ.ˆˆ)(.ˆ.ˆ 2 ς

ρ
ρς  

To simplify the 2nd and 3rd terms on the RHS of above equation, we use 

the following two vector identity 

babaababba HHHHH

rrrrrrrrrrrrrrr
).().().().()( ∇+∇−∇−∇=××∇   

and, ( ) ( )aaa HHH
rrrrrr

×∇+×∇=×∇ λλλ )(  

Hence the 2nd and 3rd terms are respectively 
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))(.()( fVfD HHH +∇−+− ςς
rr

,and 

z
w

z
V

wkVk
z

w
z

V
wk

z
V

kw
z

V
wk H

HHH
H

H
H

H
H

H ∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

×∇=×∇
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

×∇=
∂
∂

×∇+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

×∇
ς

r
rrr

r
r

r
r

r
r

.ˆ).ˆ(.ˆ.ˆ.ˆ

respectively, where, HHH VD
rr

.∇= . Hence, the vorticity equation may be written as 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

−
∂
∂

∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

−
∂
∂
⋅

∂
∂

++−=+
y

F
x

F
z
u

y
w

z
v

x
w

x
p

yy
p

x
fDf

dt
d xy

H
ρρ

ρ
ζζ 2

1)()( …..(C1.25) 

The term on the LHS indicates the production/destruction of absolute vorticity 

and the terms on the RHS indicates possible mechanisms responsible for that. 

The terms on the RHS are respectively called 

1) Divergence term                   (2)  Solenoidal term 

2) Tilting term and                    (4) Frictional term 

 

Divergence term:- 
 This term explains the effect of divergence/convergence on the 

production/destruction of vorticity.  If there is divergence then, 0>HD . Hence 

considering only the effect of this term we have, 

 )(0)( ff
dt
d

+⇒<+ ςς , The absolute vorticity decreases with time. 

Thus divergence cause cyclonic vorticity to decrease or anti cyclonic 

vorticity to increase.  This can be explained physically also.  Due to divergence, 

the stream line turns anti cyclonically or cyclonic turning, exists already, 

decreases by the effect of Coriolis force. It is shown in figure 1.10. 

 Similarly, it can be shown that due to convergence [when D < 0]  

)( f+ρ  decreases.  Thus due to convergence cyclonioc vorticity increases. 

Solenoidal term:- 
 As explained  in the context of circulation theorem, here also 

solenoidal term signifies the contribution of the baroclinic effect of atmosphere 

towards the production or destruction of absolute vorticity. 

 Let us consider the first term in the solenoidal term, the 

term
y
p

x ∂
∂
⋅

∂
∂ρ

ρ 2

1 . 
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Now as per the equation there will be generation of cyclonic vorticity if    

0>
∂
∂

x
ρ    and   0>

∂
∂

y
p . Now question is what is the physical mechanism for that. 

 Consider the adjoining fig1.11.  In this figure a rectangular 

horizontal plane has been considered, which has been divided into two parts, 

Eastern part having more density (ρ) than the western part. 

 In conformity with the condition 0>
∂
∂

x
ρ .  We also consider that 

pressure is increasing towards north   ( 0>
∂
∂

y
p

Q ) . Hence Pressure gradient force 

is directed from North south.  Since PGF=
y
P
∂
∂

−
ρ
1 , hence the western part of the 

plane will be exerted by a higher PGF than the eastern part. This difference in 

PGF creates a torque which makes the plane to rotate in an anticlockwise 

direction.  as shown in this figure.  Thus cyclonic vorticity is generated.  

 Similarly the other term, can also be explained. 

 

Tilting term: 

 This term explains the generation or destruction of the vertical 

component of vorticity by the tilting of horizontal vorticity due to non uniform 

vertical motion. 

 Tilting term:-      ⎥
⎦

⎤
⎢
⎣

⎡
∂
∂
⋅

∂
∂

−
∂
∂
⋅

∂
∂

−
z
u

y
w

z
v

x
w  

 

 We consider the first term,  
z
v

x
w

∂
∂
⋅

∂
∂

−  

 

If      0<
∂
∂
z
v        and        0<

∂
∂

x
w , then from the vorticity equation it appears 

that there will be a decrease in the cyclonic vorticity, because 
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          0)( <
∂
∂
⋅

∂
∂

−=+
z
v

x
wf

dt
d ς . 

 To understand the mechanism, we refer the figures 1.11 & 1.12.  In 

figure1.11 we have depicted the situation 0<
∂
∂
z
v .   This creates a cyclonic rotation 

in the YZ plane only, i.e. initially we have only î component (ξ ) of the vorticity 

with vortex axis directed towards east.  In figure1.12 we have shown the effect of 

imposing  0<
∂
∂

x
w  i.e. upward motion more to the west and it is less to the east. 

Due to this non-uniform distribution of vertical motion, initially west east oriented 

vortex axis i.e. the vorticity vector will be tilted as shown by dashed lines in fig 

1.12.  And in the new position, the vorticity vector may be resolved into two 

components, viz. the east ward component and the vertically down ward 

component. Initially the vertical )ˆ(k  component (ζ ) of the verticity was zero, but 

finally we have a vertical component (ζ ) in the negative direction.  Thus cyclonic 

vorticity has been changed (here reduced).  

 Hence the change in the cyclonic vorticity due to tilting of horizontal 

vorticity is explained.  

Frictional term: 
 It is clear that presence of friction makes the flow non-geostrophic. 

Hence flow can no longer be parallel to isobars.  So there must be a cross 

isobaric component of flow from high pressure to low pressure as shown in 

figure1.13.This is known as frictional convergence.  Again this convergence, by 

the virtue of divergence  term, in turn generates cyclonic vorticity. 
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Scale analysis of vorticity equation: 
What is scale analysis? 
 
Before that we should have a clear concept about ‘Order of magnitude’. 
 
 Suppose that the observed wind speed is between 6 m/sec to 50 

m/sec, then we say order of magnitude of observed wind speed is 10 m/sec. 
 
   

Ranges of 
values(m/s) 

Order of 
Magnitude(m/s) 

1- 5 010  
6-50 110  
51-500 210  
501-5000 310       etc. 

 
Scale analysis is a convenient technique to compare the relative order of 

magnitude of individual terms of  governing equation, from the knowledge of the 
order of magnitude of field variables, then retaining only the terms with highest 
order of magnitude discarding others and their by simplifying the governing 
equation. 

For performing scale analysis the following steps are to be taken: 
 

i) Typical order of magnitude of the individual field variables.  
(like u, v, T, p, x, y  etc)  are found out from the  field observations. 
 

ii) Then the relative orders of magnitude of the individual term 
of governing equations are found out. 
 

iii) Only the terms with highest order or magnitude are retained 
and others are discarded. 
 
Scale analysis of the vorticity equation: 
 
 First term of the LHS of vorticity equation may be expanded as  
 

)()()()(1))(( 2 RHS
y
F

x
F

z
u

y
w

z
u

x
w

x
p

yy
p

x
f

y
v

x
u

y
fv
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w

y
v

x
u

t

xy ⇒
∂
∂

−
∂
∂
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∂
∂

∂
∂

−
∂
∂

∂
∂
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∂
∂
⋅

∂
∂

−
∂
∂
⋅

∂
∂
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∂
∂

+
∂
∂
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∂
∂

+
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∂

+
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∂
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∂

+
∂
∂

ρρ
ρ

ζ
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Following all the necessary steps of scale analysis, we find that the terms 

z
w

y
v

x
u

t ∂
∂

∂
∂

∂
∂

∂
∂ ζζζζ ,,, on the LHS of vorticity equation and the only term  

)(
y
v

x
uf

∂
∂

+
∂
∂

−   on the RHS are having order of magnitude,   21010 −− Sec   Sec and 

all the other terms are having order of magnitude less than   21010 −− Sec . 
 
 Hence following the principle of scale analysis we can retain only 

those terms with order of magnitude   21010 −− S       and other terms may be 
discarded. 

 
 Hence the vorticity equation may be simplified into 
 

βζζζ v
y
v

x
uf

y
v

x
u

t
−

∂
∂

+
∂
∂

−=
∂
∂

+
∂
∂

+
∂
∂ )(

 

Where        
y
F
∂
∂

−=β  

 

)(][
y
v

x
ufv

y
v

x
u

t ∂
∂

+
∂
∂

−+
∂
∂

+
∂
∂

−=
∂
∂ βζζζ  

Vorticity     advection of                               Horizontal div. 
Tendency     relative vorticity 
                     By hori. wind  
 
 

)()( HHH DffV
t

−+∇⋅−=
∂
∂ ζζ ………………….(C1.26) 

 
 
  This equation is very much useful to explain the divergence pattern 

on different sectors of Jet core and also to explain the divergence pattern 
associated with trough 

Question.:        Why divergences occur to the ahead of a westerly trough? 
 
For that first write the above equation (C1.26). 
 

)()( HHH DffV
t

−+∇⋅−=
∂
∂ ζζ   

Under steady state condition, 0=
∂
∂

t
ς  .  
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Hence, 
f

fV
D HH

H
)(. +∇−

=
ς

rr

. Now the denominator of this expression is 

called advection of vorticity. It may be +ve (cyclonic) or –ve (anticyclonic) 
accordingly as wind is coming from the source of cyclonic vorticity or anticyclonic 
vorticity.  If in a region wind comes from a source of cyclonic vorticity,  then in 
that region cyclonic vorticity is brought and on the other hand if in that region 
wind comes from a source of anticyclonic vorticity, then in that region anticyclonic 
vorticity is brought. 

Now we consider a typical stationary westerly trough (figure 1.14).  
Consider a region (C) behind the trough and the region (D) ahead of the trough.  
In the region (D) winds are coming from the trough, a source of cyclonic vorticity.  
Hence in this region advection of cyclonic vorticity is taking place. 

Hence .0)( >+∇⋅− fV HH ζ Hence in this region, 

=HfD .0)( >+∇⋅− fV HH ζ  
0>∴ HD , implying that at 300 mb divergence takes place in this region.  

Hence low pressure area forms at the surface area ahead of an  upper air trough.  
Similarly in (C) region winds coming from a ridge, a source of anticyclonic 

vorticity, hence anticyclonic vorticity advection takes place over this region.  
Hence in this region 

0)( <+∇⋅− fV HH ζ
r

;          so       0)()( <+∇⋅−= fVDf HHH ζ  
 
 0<∴ HD , so there is convergence behind the trough at 300 hPa, 

so high pressure area forms at the surface behind an U.A. trough. 
 
We shall discuss the divergence pattern in different  sectors of Jet Stream. 

To discuss the divergence pattern in different sectors of the sub-tropical westerly 
jet stream, we may refer figure 1.15. In this figure four sectors have been shown 

Sector I (Left exit) 
 
 In this sector we have considered two points P & Q, P being nearer 

the core and Q being away from Jet core.  
 We compute the vorticity at these two points using natural co-

ordinate.  In the natural co-ordinate system, vorticity   ζ is given by 

n
VVKs ∂
∂

−=ζ ; sK  being the Stream line Curvature, here 0=sK  as the 

stream lines are almost straight line for Jet stream. 

n
V
∂
∂

−=∴ζ  

 Now in this sector, at the point P = + 27.5 Unit and Q = 22.5 unit,  
But the direction of wind is from P to Q ie. wind is coming from higher cyclonic 
vorticity to lower cycloniv vorticity.   Hence in this case advection is cyclonic 
vorticity . 

0)( >+∇⋅−∴ fV HH ζ  
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=∴ )( HDf .0)( >+∇⋅− fV HH ζ  
So, 0>HD  

 
Hence divergence takes place at the Jet Core Level in the Left exit sector I. 
Following a similar approach, divergence pattern in other sectors may also be 
found. 
Barotropic or Rossby potential vorticity: 
We consider a fluid flow in an infinite channel, bounded below by the earths 
surface and above by a rigid lid (for example, tropopause). For such fluid flow, 
normal component of fluid at any point is zero, i.e., at any point, 0=nV . Hence, 

from Gauss’s divergence theorem we have, ( ) ∫∫∫∫∫ ==∇
s

n dsVdV 0.
σ

σ
rr

. Hence such 

flow is non divergent. Hence, for such flow the scaled vorticity equation reduces 
to: 

z
wf

dt
fd

∂
∂

+=
+ )()( ςς . Since, the flow is non-divergent, we may ignore the effect 

of ageostrophic part of horizontal wind. Also we consider a barotropic 
atmosphere.  
Under these conditions, vertical integration of the above equation from bzz = to 

tzz = leads to 

dt
dh

dt
zd

dt
zd

zwzw
dt

fd
f

h bt
bt =−=−=

+
+

)()()(
)(

ς
ς

, where, bt zzh −=  is the depth 

of the fluid. The above equation after integration with time further simplified to 

=
+
h

fς Constant. This quantity is known as Barotropic or Rossby potential 

vorticity. This is known as conservation of Barotropic potential vorticity. 
 For non-divergent flow at any level, scaled vorticity equation reduces to 

0)(
=

+
dt

fd ς , i.e., =+ fς constant. Trajectory of an air parcel conserving 

absolute vorticity is known as Constant Absolute Vorticity (CAV) trajectory. It can 
be shown that this trajectory is looked wave like. 
Baroclinic or Ertel’s potential vorticity 
To obtain an expression for Baroclinic or Ertel’s potential vorticity, we start from 
horizontal equation of motion in ),,,( tyx θ co-ordinate. 
We know that vector form of the horizontal equation of motion in isobaric co-
ordinate is given by 

( ) HHP
H

HPH
H FVkf

p
V

VV
t

V rrr
r

rrr
r

+×+∇−=
∂
∂

+∇+
∂
∂ ˆ. φω  
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It can be shown that, ( ) ( )
θ

θω θ ∂
∂

+∇+
∂
∂

=
∂
∂

+∇+
∂
∂ H

HH
HH

HPH
H V

VV
t

V
p

V
VV

t
V

r
&

rrr
rr

rrr
r

..  and 

also it can be shown that, MP θφ ∇=∇
rr

, where gzTCM P +=  is Montgomery 
stream function. 
Hence, the vector form of horizontal equation of motion in isentropic co-ordinate 
is given by: 

( )
θ

θθ ∂
∂

+∇+
∂
∂ H

HH
H VVV
t

V
r

&
rrr

r

. = HH FVkfM
rrr

+×+∇− ˆ
θ …..(C1.27) 

Performing θ∇×
r

k̂  on both sides of the above equation for frictionless flow we 

have, )(
)(

fD
dt

fd
+−=

+
θθ

θ ς
ς …..(C1.28),  

where, θθ ς,D are respectively the horizontal divergence and vertical component 
of vorticity in isentropic co-ordinate. Again continuity equation in isentropic co-

ordinate gives, θ
σ

σ
D

dt
d

−=
1 …..(C1.29), where, 

θ
σ

∂
∂

= − pg 1 . 

Combinining (C1.28), (C1.29) and then integrating with respect to time we obtain 

=
+
σ

ςθ f Constant. This is known as conservation of baroclinic potential vorticity 

and the quantity on the LHS is known as baroclinic potential vorticity. 
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Chapter-II 

PERTURBATION THEORY 
 

Main goal in Meteorology is to forecast the weather parameters for the future time 

with the knowledge of their present value.  Bjerkness (1904) had recognized this problem 

of weather forecasting as an initial value problem(IVP). 

Initial value problem is a partial differential equation (Linear/ Non-Linear) with 

time (t) as an in dependent variable. 

Some Useful Concepts : 

Partial derivative:  

Let a quantity ‘S’ is dependent on x, y, z, t.  Then derivative of S with respect to 

any one (say t) of these four, keeping rest three unchanged, is called partial derivative of 

S with respect to ‘t’.  For example 24 hrs change of pressure at a place is the partial 

change in pressure with respect to time. These are denoted by 
z
s

y
s

x
s

t
s

∂
∂

∂
∂

∂
∂

∂
∂ ,,, etc. 

Examples: Let, axyzyxV 333 ++=  

Hence, ayzx
x
V 33 2 +=
∂
∂  (y, z have been kept constant) 

axzy
y
V 33 2 +=
∂
∂  (z, x have been kept constant) 

axy
z
V 3=
∂
∂   (x, y have been kept constant) 

Partial differential equation (PDE):  

A differential equation is an equation which involves derivative or differential of 

the dependent variable. A PDE is an equation which involves partial derivatives or 

differentials of the dependent variable. 

EX: fv
x
p

y
uv

x
uu +

∂
∂

−=
∂
∂

+
∂
∂

ρ
1  is a partial differential equation, as it contains the 

partial derivatives of the dependent variables ., pu  

Order of a PDE  : 

 It is the highest order partial derivatives involved in the equation. 
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Ex. Consider the PDE ),(2

2

2

2

yxF
y
u

x
u

=
∂
∂

+
∂
∂ . 

Here,  u is the dependent variable, x, y are independent variables and F(x ,y) is a 

known function of x,y. In the PDE the highest order partial derivative involved in this 

equation is 2. So the order of this PDE is 2. 

Linear and non-linear PDE  : 

A general form of a 2nd order PDE is given by 

GFu
y
uE

x
uD

y
uC

yx
uB

x
uA =+

∂
∂

+
∂
∂

+
∂
∂

+
∂∂

∂
+

∂
∂

2

22

2

2

. 

In the above equation A,B,C,D,E,F and G are called coefficients of the PDE. If all 

these coefficients are constants or functions of independent variables ( x , y), then the 

resulting PDE is known as a Linear PDE. 

For example let us consider the following PDE: 

02 2

22

2

2

=
∂
∂

+
∂∂

∂
+

∂
∂

y
u

yx
u

x
u .  

For this PDE           A = 1 

                                B = 2 

                                C = 1 and  

                           D = E = F = G=0. Hence this PDE is a Linear PDE. 

We consider another PDE, 

)(2 2

2
2

2

2

2
2 yx

y
ux

yx
uxy

x
uy +=

∂
∂

+
∂∂

∂
+

∂
∂ . In this PDE,  A, B, C and G are functions 

of x or y or both. So, this is also a 2nd order linear PDE. 

on the other hand if at least one these coefficients  is a function dependent 

variable, then the resulting PDE is known as a non-linear PDE. 

For example let us consider the following PDE: 

x
p

y
uv

x
uu

∂
∂

−=
∂
∂

+
∂
∂

ρ
1 .  

In the above equation, A = B = C = F = 0, D = u   and E = v. Since u, v are 

dependent variables, hence it is a non-linear PDE. 

Need for the perturbation theory  : 
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There are several method for weather forecasting, viz. synoptic, statistical, 

Dynamic (Numerical weather prediction) method etc. 

In the NWP, the governing equations are solved for the weather parameter, viz. 

u,v,w, T, P etc.. The governing equations are non-linear partial differential equation.  

Non-linear partial differential equations can not be solved exactly, as till now we don’t 

have any method to get exact solution of non-linear partial differential equation. 

To get rid of the above problem, there are two ways viz., 

(a) Transform the non-linear partial differential equation into ordinary 

differential equation and then get exact solution. 

(b) Transform the set of partial differential equations into their finite 

difference form and then solve them numerically.  

Discussion about (a) is beyond the scope of discussion.  Now while discussing 

(b), it is worth mentioning that the numerical solution of these non-linear partial 

differential equation is highly sensitive to the initial conditions given, i.e. a slight change 

in the initial condition may lead to an abrupt change in the numerical solution.  This is 

due to the presence of non-linearity in the governing equations.  Perturbation theory was 

proposed to remove the non-linearity from the governing equations. 

Basic postulates of perturbation theory  : 

This theory is based on same postulates, which are given below  : 

I. According to this theory, the total atmospheric flow consists of a mean flow 

and a perturbation superimposed on it.  So, that all field variables consist of a 

basic (mean) part and a perturbation part. 

II. Both the mean part and the total (mean +  perturbation) satisfy the governing 

equations.  Mean part is the temporal and longitudinal average of the variable 

as a result of which it is independent of x and t. 

III. The magnitude of perturbation part is very small as compared to that of mean 

part, so that any product of perturbations or product of their derivatives or 

product of a perturbation and derivative of perturbation may be neglected. 

Now, it is our task, to verify whether using the above postulates, the non-linearity 

from a  

term of governing equation may be removed or not. 
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For that we consider an arbitrary non-linear term, say, 
x

u
∂
∂ϕ . 

Using postulate (I), uuu ′+=  and ϕϕϕ ′+= . 

Hence, 
x

u
x

u
xx

uu
x

uu
x

u
∂
′∂′+

∂
′∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
′∂

+
∂
∂′+=

∂
′+∂′+=

∂
∂ ϕϕϕϕϕϕϕ )()()( (Here, 

0=
∂
∂

x
ϕ , as per 2nd part of  postulate (II)). Again using postulate (III), 0≈

∂
′∂′

x
u ϕ , being a 

product of perturbation quantity and its derivative. 

Hence using perturbation technique, non-linearity from the governing equations 

may be removed. 
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Mechanisms of pressure change 
Pressure tendency equation: To derive pressure tendency equation, we shall start from 
the hydrostatic approximation 

ρg
z
p

−=
∂
∂ …….(1) 

Integrating the above equation vertically from an arbitrary level to , we 
obtain, 

0zz = ∞=z

∫∫
∞

=

∞

=

−=
∂
∂

00 zzzz

dzgdz
z
p ρ  

∫
∞

=⇒
0

)( 0
z

dzgzp ρ , since, at the top of the atmosphere there is no pressure. 

Now, differentiating the both sides of the above partially with respect to time, we obtain, 

∫∫
∞∞

∂
∂

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

=
∂
∂

00 zz

dz
t

gdzg
tt

p ρρ   

Again from continuity equation we have, ).( V
t

rr
ρρ

∇−=
∂
∂  

So, we have, 
( ) )()(.).(

).(

00

00

0

zwzgdzVgdzVg

dzVg
t
p

z
hh

z
hh

z

ρρρ

ρ

+∇−+∇−=

∇−=
∂
∂

∫∫

∫
∞∞

∞

rrrr

rr

 

The above equation is known as pressure tendency equation. Left hand side of the above 
equation represents pressure tendency at a point at level 0zz = and right hand side 
consists of three terms each of which representing some mechanisms for pressure change. 

First term is known as divergence term. It represents net lateral divergence or 
convergence across the sidewall of an atmospheric column with base at and 
extending up to top of the atmosphere. We know that pressure at 

0zz =

0zz = is nothing but the 
weight of air contained in an atmospheric column with base at 0zz = having unit cross 
sectional area and extending up to top of the atmosphere. Now this weight will increase 
or decrease if mass of air inside this column increases or decreases. Again mass of air 
inside this column increases or decreases if there is net inflow (convergence) or out flow 
(divergence) of air. Hence, net lateral divergence leads to fall in pressure and net lateral 
convergence leads to a rise in pressure. For synoptic scale system, this term contributes 
significantly towards pressure change. 

Second term expresses the net lateral advection of mass into the atmospheric 
column with base at having unit cross sectional area and extending up to top of the 
atmosphere. Clearly net positive advection leads to an increase in mass, which in tern 
leads to rise in pressure and net negative advection leads to a decrease in mass which in 
tern leads to fall in pressure. 

0zz =

Third term expresses flux of mass into the above atmospheric column across its 
base at .  0zz =
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Movement of different pressure systems: Here we shall discuss the movement 
of pressure systems (lows/highs) for different isobaric patterns. Mainly we shall discuss 
Sinusoidal pattern, circular pattern and circular pattern beneath a Sinusoidal pattern 
above. 

Sinusoidal isobaric pattern: Let us refer to the adjoining sinusoidal pressure 
pattern. Ahead of the trough there is divergence and ahead of the ridge there is 
convergence at the surface. Hence fall in pressure takes place ahead of trough and rise in 
pressure ahead of ridge. Due to this, after some time lowest pressure will be found ahead 
of trough, as a result trough will be shifted towards east of its present location. Hence, the 
pressure system will move in a westerly direction.  

996 
 
 
 
 
998 
 
 
 
 
 
 
Fig.1 
 
Circular low-pressure pattern: Let us consider the adjoining circular low-

pressure pattern. Lowest pressure is at the center of the circular pattern. To the north of 
the center Coriolis force is higher than that to the south. As we know that Coriolis force 
makes flow anticyclonic, hence cyclonic wind will be more to the south than to the north 
of the center. Hence to the east of the center there is downstream decrease in wind speed 
and to the west there is down stream increase in wind speed. Hence divergence takes 
place to the west of the center as a result of which there will be fall in pressure to the west 
of the center. Due to this, center of low after some time will be shifted to the west of its 
present position. Hence net result is movement of the pressure system in an easterly 
direction.  
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Chapter-III 
 

ATMOSPHERIC WAVES: 
 

 Wave may be defined as a form of disturbance in a medium. 

 When a disturbance is given to a part of an elastic medium, then 

that part gets displaced from its original position.  But by the virtue of elasticity, a 

restoring force is developed in the displaced part, which helps it to return to its 

original position.  This leads to an oscillatory motion, which is known as wave. 

Some useful concepts on waves: 

WAVE LENGTH:  

 It is defined as the distance between two consecutive points on the 

wave, which are in the same phase of oscillation, i.e. distance between two 

successive troughs or ridges. 

WAVE NUMBER: 

 Wave number of a wave with wave length ‘L’  is defined as the 

number of such waves exist around a circle of unit radius. Hence wave number 

k  is defined by, 
L

k π2
= , where L is the wave length. 

 Since a wave may travel in any direction, hence we may define 

wave length / wave number for three directions, viz. along x, y and z directions. 

 If  yx LL , and zL   are respectively the wave lengths along x, y and z 

directions and if lk, and m  are wave numbers along x, y and z directions, then 

 
yx L

l
L

k ππ 2,2
==  and 

zL
m π2
= . 

FREQUENCY : 

 It is the number of wave produced in one second.It is denoted by ν. 

PHASE VELOCITY: 

 We know that any disturbance behaves like a carrier. So, wave 

may be thought of as a carrier.  Phase velocity is defined as the rate at which 
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momentum is being carried by the wave. For practical purpose, it may be taken 

as the speed with which a trough / ridge moves. 

It can be shown that, phase velocity in any direction = frequency / wave 

number in that direction. Thus if the phase velocity vector C
r

 has components  

Cx, Cy, Cz along x, y and z direction, then  lCkC yx /,/ νν ==  and mCz /ν= . 

GROUP VELOCITY : 

It is the rate at which energy is being carried by the wave. When a single wave 

travels then the energy and momentum are carried by the wave at the same rate. But 

when a group of wave travel then momentum propagation rate and energy propagation 

rates are different. So, in such case group velocity and phase velocity are different. Thus 

if the phase velocity vector GC
r

 has components  CGX, CGY, CGZ  along x, y and z 

direction, then  
l

C
k

C GYGX ∂
∂

=
∂
∂

=
νν ,  and 

m
CCZ ∂

∂
=

ν . 

 

DISPERSION RELATION : 

 It is a mathematical relation ),,( mlkf=ν between the frequency (  ν 

) and wave numbers mlk ,, . 

 Generally for any wave, phase velocity and group velocity is 

obtained from the dispersion relation. 

 If for any wave phase velocity and group velocity are same, then it 

is called a non-dispersive wave,  otherwise it is a dispersive wave. 

 

 

ROSSBY WAVE: 

 

 First it will be shown how conservation of absolute vorticity (ζ+f)  

leads to wave like motion. 

 We consider an object placed on or over the earths surface at 

latitude   ‘ϕ’ .  In the adjoining figure, a meridional circle passing through the 
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object has been shown.  Suppose, while motion, the absolute vorticity (ζ+f)  of 

the object remains conserved.  Let the object be at stationary state initially. 

Then the relative vorticity (  ζ   ) of the object is zero at the initial state.  Let 

f 1 be the value of planetary vorticity at the initial state.  Now if the object be 

displaced meridionally,  then its relative vorticity will change to ζf  (say).  If   f2   be 

the value of planetary vorticity (f) at the final state, then we must have  

yy
y
ffffff ff βδδδςς −=
∂
∂

−=−=−−=⇒+=+ )(0 1221 . 

Hence, 0>fς , if δy < 0, i.e., for a southward displacement and  

 0<fς , if  δy > 0, i.e., for a northward displacement. 

 So,  if the object is displaced northward, then it turns anti-

cyclonically towards its initial latitude.  At the initial latitude ζf  = O, but by inertia it 

will continue to move southward,  cross the initial latitude and acquire cyclonic 

vorticity.  After acquiring cyclonic vorticity, the object turns towards its original 

latitude.  Thus the object executes wave like motion about its initial latitude ‘ϕ’ .  

This wave is known as Rossby wave.  

 Thus the dynamical constraint for Rossby wave is the conservation 

of absolute vorticity.  

So, to obtain the dispersion relation for the Rossby wave, the governing 

equation is conservation of absolute vorticity , i.e. 

 

0)(
=

+
dt

fd ς 0. =+∇+
∂
∂

⇒ βςς vV
t

rr
…..(1) 

The above equation is linearised using perturbation method. Here we 

made the following assumptions  : 

 Atmosphere is auto-barotropic 

 Basic flow is zonal 

 Basic zonal flow is meridionally uniform 
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With these assumptions, the above governing equation may be linearised 

to  

0=′+
∂
′∂

+
∂
′∂ βςς v

x
U

t
….(2) 

ς ′ is perturbation  relative vorticity and v′v’ is perturbation meridional wind. 

For equation (2) we seek for wave like solution, like,  )()( tcxkie −∝′ , where, 

k  is the zonal wave number and c is the zonal phase velocity. 

After simplification we obtain following dispersion relation , 
k

kU βν −= . 

Hence phase velocity C = 2k
U

k
βν

−=  and group velocity CG = 2k
U

k
βν

+=
∂
∂ . 

Clearly  GCC ≠ . So,  Rossby wave is a dispersive wave. 

Since 2k
UC β

−=− , hence Rossby wave retrogates with respect westerly 

mean flow. Again 02 >=−
k

UCG
β . Hence Rossby wave carries energy in the 

downwind direction with respect to westerly mean flow. Physically the above 

results may be interpreted as follows: For momentum source is the westerly 

mean flow and for energy the source is the disturbance i.e., the wave.  

HAURWITZ WAVE  : 

 This wave is a generalization of the Rossby wave.  Similar to 

Rossby wave, this wave also results from the conservation of absolute vorticity.  

To obtain the dispersion relation for this wave we take the same assumptions as 

in Rossby wave except that, here we assume that the basic zonal flow ‘U’ is not 

uniform in the meridional direction, rather it is a function of ‘y’  (latitude) and 

amplitude of this wave is zero at y = ± d, i.e., U(± d) = 0. 

 Starting with the conservation of absolute vorticity, and following 

the approach, similar to that,  made in Rossby  wave, we arrive at the following 

dispersion relationship. 
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−=

2

2
2

2

2

4d
k

k
dz

Ud

kU
π

β
ν  

 

 Clearly if the zonal basic flow ‘U’ is uniform in the meridional 

direction, then 02

2

=
dz

Ud   and  d → ∞ . In that case 
k

kU βν −= .This is nothing  but 

the dispersion relationship for Rossby wave. So, the Haurwitz wave is a 

generalisation of Rossby wave. 

 

GRAVITY WAVE 

 We have seen that to generate any wave always a restoring force 

is required.  Gravity waves are those waves, for which he restoring force is 

buoyancy. 

 

Classification of Gravity waves: 

 

Gravity waves 

      

 

 

            External Gravity Wave   Internal Gravity Wave 

Can travel along the interface   Can travel along the interface 

between 

between two fluids of different  two fluids of different densities. 

densities.  

 

Cannot travel across the fluid.  Can also travel across the fluid. 
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Vertical scale is negligible    Vertical scale is comparable to 

the  

Compared to horizontal scale   horizontal scale of motion 

of  motion  

Eg. Sea waves, Tsunami   Eg. Mountain wave, etc. 

 

EXTERNAL GRAVITY WAVE (EGW) 

 To study the external gravity wave, we consider two different fluids 

of densities 1ρ  and 2ρ  ( 1ρ  > 2ρ ) placed one over the other.  In the undisturbed 

condition their interface is a plane surface whose vertical section is a horizontal 

line as shown in figure 3(a).  Now if any perturbation is given to the interface, 

then it would no longer be a plane surface, rather a wavy surface.  Its vertical 

section would be a wave as shown in fig. 3(b).  To study this wave, we consider 

wave motion in the x-z (Zonal-vertical) plane, as shown in fig. 3(c). 

 The governing equations are: 

• u-momentum equation,  

• continuity equation.   

These equations are linearized using perturbation method.  Then 

wave like solution is sought for the perturbation height of the interface.  Then 

after simplification we obtain the following dispersion relation. 

 

1ρ
ρν ∆

±= gHkUk , where, H  is the mean depth of the free surface,  

ρ∆ = 1ρ - 2ρ .    

Now if we take air over ocean water, then definitely 1ρ >> 2ρ    and      

ρ∆ = 1ρ - 2ρ ≈ 1ρ ,  and in that case gHkUk ±=ν  

 

 Hence, phase speed gHU
k

C ±==
ν  
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 And group velocity gHU
k

CG ±=
∂
∂

=
ν  . 

 Hence C = CG 

 So, EGW is a non-dispersive wave.  

 Here  gH   is known as shallow water gravity wave speed and U 

is known as Doppler shift. 

 

Internal gravity wave (IGW) : 

 

To study IGW we consider, for simplicity, a flow which is, 

 

• 2 – D (x-z) 

• Adiabatic 

• Frictionless 

• Non – rotational  

• Boussinesq. 

 

The governing equations are: 

  

•  U-momentum equation 

• W-momentum equation 

• Continuity equation 

• Energy equation under adiabatic condition. 

 

The above equations are linearised using perturbation method. 

 

The linearised form of the above equations are : 

x
p

x
uU

t
u

∂
′∂

−=
∂
′∂

+
∂
′∂

0

1
ρ

 

00

1
θ
θ

ρ
′

+
∂
′∂

−=
∂
′∂

+
∂
′∂ g

z
p

x
wU

t
w  



Lecture notes on Dynamic Meteorology prepared by Somenath Dutta for advanced (old) meteorological 
training course. 
 

0=
∂
′∂

+
∂
′∂

z
w

x
u  

0=
∂
′∂

+
∂
′∂

x
U

t
θθ  

 

Wave solutions, for the perturbations in the above equations are sought.  

Wave solutions are like [ ])(exp tmzkxi ν−+  

 

Then after same simplifications we obtain the following dispersion 

relationship 

22 mk

NkkU
+

±=ν . 

 

Phase velocity : 

X-Component of phase velocity 
22 mk

NU
k

Cx
+

±==
ν ,  

Z-Component of phase velocity 
22 mkm

Nk
m
kU

m
Cz

+
±==

ν . 

Group velocity:  

X-Component of group velocity 
22

2

mk
NmU

k
CGx

+
±=

∂
∂

=
ν ,  

Z-Component of group velocity ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
±−=

∂
∂

=
22 mk

Nkm
m

CGz
ν . 

 

Now we consider a special case for U = 0 

 

Then
22 mkm

NkCz
+

±=  and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
±−=

22 mk
NkmCGz  
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Thus it follows that for a given combination of signs of ;,, lk ZC  and GZC are 

opposite to each other.  Thus vertical phase propagation (momentum 

propagation) and group propagation (energy propagation) by IGW are opposite 

to each other. 

 

Also from the above expressions of C’s and CG ‘s it follows that the vector 

YX CjCiC ˆ+=
)r

 is perpendicular to the phase lines   =−+ tmzkx ν constant, where 

as the vector GYGXG CjCiC ˆ+=
)r

 is parallel  to the phase lines 

=−+ tmzkx ν constant. 

 

 Hence for the IGW, phase velocity and group velocity are 

perpendicular to each other. 

Importance of IGW: 

IGW, although, is generated at lower troposphere, they can transport 

energy, momentum etc upto a great height.  From the expressions for phase 

velocity and group velocity, it is seen that a vertically propagating IGW extracts 

Westerly Momentum from the mean flow at upper level or imparts easterly 

momentum to the mean flow at upper level. 

IGW is believed to be one of the causes responsible for QBO. CAT is 

believed to be also due to continuous extraction of momentum from upper level 
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mean flow by 

 
 

 



Chapter-IV 

Planetary Boundary Layer (PBL) 

 

A Brief essay on PBL: 

 

PBL is the lower most portion of the atmosphere, adjacent to the earth’s surface, where maximum 

interaction between the Earth surface and the atmosphere takes place and thereby maximum exchange of 

Physical properties like momentum, heat, moisture etc., are taking place. 

Exchange of physical properties in the PBL  is done by turbulent motion, which is a characteristic 

feature of PBL. Turbulent motion may be convectively generated or it may be mechanically generated. 

If the lapse rate near the surface is super adiabatic, then PBL  becomes positively Buoyant, 

which is favourable for convective motion.  In such case PBL is characterized by convective turbulence. 

Generally over tropical oceanic region with high sea surface temperature this convective turbulence occurs.

 If the lapse rate near the surface is sub adiabatic then the PBL is negatively buoyant and it is not 

favourable for convective turbulence.  But in such case, if there is vertical shear of horizontal wind, then 

Vortex (cyclonic or anti cyclonic) sets in, in the vertical planes in PBL, as shown in the adjacent fig 2b.  

This vortex motion causes turbulence in the PBL, known as mechanical turbulence. 

If the PBL is positively buoyant as well as, if vertical shear of the horizontal wind exists, then both 

convective and Mechanical turbulence exits in the PBL.  The depth of the PBL is determined by the 

maximum vertical extent to which the turbulent motion exists in PBL.  On average it varies from few cms 

to few kms.  In case of thunderstorms PBL may extend up to tropopause. 

Generally at a place on a day depth of PBL is maximum at noon and in a season it is maximum 

during summer. 

Division of the PBL into different sub layers: 

 The PBL may be sub divided into three different sections, viz viscous sub layer, the surface layer 

and the Ekmann layer or entrainment layer or the transition layer. 

 Viscous layer is defined as the layer near the ground, where the transfer of physical quantities by 

molecular motions becomes important.  In this layer frictional force is comparable with PGF. 

 The surface layer extends from z = 0z (roughness length) to szz = with sz , the top of the surface 

layer, usually varying from 10 m to 100 m.  In this layer sub grid scale fluxes of momentum (eddy stress) 

and frictional forces are comparable with PGF. 

The last layer is the Ekmann layer is defined to occur from sz  to iz , which ranges from 100 m or 

so to several kilometers or more.  Above the surface layer, the mean wind changes direction with height 

and approaches to free stream velocity at the height z as the sub grid scale fluxes decrease in magnitude.  In 

this layer both the COF and Eddy stress are comparable with PGF. 
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Boussinesq approximation: According to this approximation density may be treated as constant 

everywhere in the governing equations except   in the vertical momentum equation, where it is coupled 

with Buoyancy term. Physically this approximation says that the variation of density in the horizontal 

direction is insignificant as compared to that in the vertical direction. 

 

Governing equations in the PBL:  Governing equations in the PBL, following adiabatic and Boussinesq 

approximation, are given below: 

( ) xFfv
x
puV

t
u

++
∂
∂−

=∇+
∂
∂

0

1.
ρ

rr
……..(4.1) 

( ) yFfu
y
pvV

t
v

+−
∂
∂−

=∇+
∂
∂

0

1.
ρ

rr
……(4.2) 

( ) zFg
z
pwV

t
w

+−
∂
∂−

=∇+
∂
∂

00

1.
θ
θ

ρ

rr
……(4.3) 

0=
∂
∂

+
∂
∂

+
∂
∂

z
w

y
v

x
u

 …….(4.4) 

( ) 0. =∇+
∂
∂ θθ rr

V
t

. ……(4.5) 

 

Concepts of mean motion and eddy motion in the PBL & Reynolds averaging technique. 

 

 In the PBL both the mean motion and the eddy motion are very important.  Hence it is 

required to have equations for both motion.  

 To distinguish these two, Reynold devised an averaging method, which is discussed 

below: 

 Let us consider any field ‘ S ’at a synoptic hour T. Let ObsS bet he observed value of 

‘ S ’ at time T hrs.  Now to find out the contribution from mean and eddy motion towards ‘ S ’, we have to 

take a number of observations of ‘ S ’ during the time interval ⎟
⎠
⎞

⎜
⎝
⎛ +−

2
,

2
ττ TT . Suppose during the above 

period we have ‘n’ observations. Viz., nSSS ,.....,, 21 of S . Then ∑∫ ≈=

−

−

n

i

T

T

S
n

dtsS
1

2

2

1
τ

τ

is called the 

mean part of ‘S’ at T, and ( )SSS obs −=′  is called the eddy part of S  at time T hrs.  This Eddy part is 
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due to turbulent eddy motion in the PBL. The quantity ‘τ’ is called averaging interval.  While choosing ‘τ’ 

the following precautions are necessary to take: 

a) It should not be too small to miss the trend in mean motion. 

b) It should not be too large that eddies filtered out. 

For two arbitrary quantity, say, α and β, we have, ααα ′+=  and βββ ′+= . Hence, 

βαβααβ ′′+= . The last term is known as eddy co-variance. 

 

Concept of Eddy flux and Eddy flux divergence/ convergence: 

 

 Flux of any field refers to the transport of that field in unit time across unit area.  Hence flux of  a 

field, say S ,  is VS
r

, V
r

being wind velocity. 

 

 Eddy flux, thus refers to the transport of some field by eddy wind.  If wvu ′′′ ,, are the 

components of eddy wind, then eddy wind vector is given by )ˆˆˆ( wkvjuiV ′+′+′=′
r

, then eddy flux of a 

quantity S is VS ′
r

.   

 

 Flux divergence/convergence physically refers to the dispersion or accumulation of the field after 

being transported.  Mathematically it is expressed as ).( VS ′∇
rr

. 

 

 In the mean equations of motion some new terms have appeared. 

 

 These terms are known as eddy flux convergence of eddy momentum.  Physically they may 

interpreted as follows: 

 

Let us consider, the eddy zonal momentum )(u ′  is being transported by all the three components 

wvu ′′′ ,, of eddy wind.  Now eddy zonal momentum transported by these components in unit time across 

unit area are respectively ., wuandvuuu ′′′′′′  

 The first one is along î direction, second one in ĵ  direction and third one in k̂ direction.  Thus at 

any point transport of u ′may be expressed as the vector ( )Vu
r
′′ . 

 After being transported, the eddy u  momentum is being accumulated, which is expressed as 

( )Vu
rr
′′∇− . . This term is called eddy flux convergence ofu ′ . Thus, this much eddy zonal momentum is 

being added to the existing mean zonal momentum u, causing a change in u. Thus this term has appeared in 
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the zonal momentum equation for the mean flow. Similarly one can argue for the existence of the other 

eddy flux convergence terms.  

 

Governing  equations for mean motion: To obtain the equations for mean flow, we first need to express 

terms like, uV ).( ∇
rr

in flux form. 

We know that, ( ) VuVuuV
rrrrrr

..).( ∇−∇=∇ . Again following Boussinesq approximation, .0. =∇V
rr

 

Hence, ( ) ( ) ( )( )[ ] ( ) ( ) ( ) ( )VuVuVuVuVVuuVuuV
rrrrrrrrrrrrrrr
′′∇+′∇+′∇+∇=′+′+∇=∇=∇ .......  

Taking Reynolds average, we have, 

( )uV ∇
rr

. ( ) ( )VuVu
rrrr
′′∇+∇= ..  

Again 
t
u

t
u

t
u

t
u

∂
∂

=
∂
′∂

+
∂
∂

=
∂
∂

 and, ( ) ( ) ( ) ( )uV
t
uVuuV

t
uVu

t
u

∇+
∂
∂

=∇+∇+
∂
∂

=∇+
∂
∂ rrrrrrrr

....  

Hence, the governing equations for mean flow are 

( ) ( )VuFvf
x
puV

t
u

x

rrrr
′′∇−++

∂
∂

−=∇+
∂
∂ .1.

0ρ
 ……. (4.6) 
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∂
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0ρ
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pwV
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∂
∂ .1.

00 θ
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ρ
……(4.8) 

( ) ( )VV
t

rrrr
′′∇−=∇+

∂
∂ θθθ .. …..(4.9) 

0. =∇V
rr

…..(4.10)  

 

 

Turbulent Kinetic Energy Equation 

 

Turbulent Kinetic Energy equation is obtained from the equations of motion , in component form, for 

turbulent motion, which can be obtained by subtracting equations 4.6, 4.7 & 4.8 from 4.1, 4.2 & 4.3 

respectively.  Then the subtracted equations are multiplied by wvu ′′′ ,, respectively, then they are 

added and then taking Reynolds average we obtain required TKE  equation 

 

 ε−++=
∂

∂ TRBPLMP
t

TKE)(
……(4.11) 
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Where, wNwgBPL ′′−=′′= ξθ
θ

2

0

, and  ( )
z
VVwMP
∂
∂

•′′−=

r
r

. 

Here, BPL stands for Buoyancy production or loss,   MP stands for Mechanical production, 2N stands for 

square of Brunt-Vaisalla frequency and ξ ′  is eddy vertical displacement. TR stands for redistribution by 

transport and pressure forces and ε represents frictional dissipation which is always positive reflecting the 

dissipation of the smallest scale of turbulence by molecular viscosity. 

 In our introduction we have mentioned that generally turbulence in PBL is either convectively or 

mechanically generated. 

 Now we shall see that, for convectively generated turbulence, through BPL term eddies are being 

supplied K.E.  

 Effect of Buoyancy production or loss (BPL) term : To examine, the effect of this term, we 

shall consider three conditions viz., When atmosphere is stably stratified, When atmosphere is unstably 

stratified and When atmosphere is neutrally stratified. 

First of all we must note that eddy co-variance between eddy vertical velocity and vertical 

displacement must be positive, as the former one must be upward or downward if the later is so. If the 

Atmosphere is stably stratified, then we know that 2N  is positive. Hence in that case BPL must be 

negative. Thus convective turbulence is suppressed in a stably stratified PBL. Similarly one can show that 

in an unstably stratified PBL ( 2N < 0), BPL is positive and convective turbulence is sustained. Finally if 

the PBL is neutrally stratified, then 2N = 0. So BPL  = 0, hence Convective turbulence is neither generated 

nor sustained. 

 

Effect of Mechanical Production (MP) term:  

 

 In the introduction it was shown qualitatively that Mechanically generated turbulence can occur 

only if there is a vertical shear (either cyclonic or anticyclonic) of the horizontal wind.  

 

 Now we can discuss the MP term and see how it is significant for mechanically generated 

turbulence. First term of MP represents the vertical eddy flux of eddy horizontal momentum and the second 

one is vertical shear of eddy horizontal momentum (i.e., vertical gradient of the components of mean 

horizontal wind). Qualitatively one can argue that if the vertical gradient of any quantity is positive (i.e., 

upward), then eddy transport of that quantity has to be downward and the vice-versa. Thus we see that 

vertical gradient of the mean and vertical eddy transports are opposite to each other. As a result of which 

MP is always positive, provided there is a vertical shear of mean horizontal wind. Hence in any case, due to 

MP term TKE increases with time and Turbulence is sustained. Thus, whenever there is vertical shear of 

the mean horizontal wind, then mechanically generated turbulence occurred. 
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 Now, we consider a typical situation, when PBL is stably stratified is and there exists vertical 

shear of mean horizontal wind.  In such situation BPL term inhibits turbulence and MP term enhances 

turbulence.  In this situation it is difficult to say whether their combined effect is to suppress turbulence or 

to sustain turbulence.  It has been found empirically that to maintain the turbulence, MP should exceed four 

times the BPL. This condition is measured by a quantity called the flux Richardson number (Rf), which is 

defined by
MP
BPLfR −= . If the PBL is unstably stratified then 0<fR   and turbulence is sustained by 

convection, as mentioned earlier. If PBL is stably stratified, then 0>fR . In such case fR  must be less 

than 0.25 to sustain the turbulence. Thus fR  should be less than ¼ to maintain turbulence in a stably 

stratified PBL by wind shear. 
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Sub-grid scale Physical processes:  A Physical process whose spatial dimension is less than the grid scale, 

is known as sub-grid scale Physical process. Sub grid scale physical processes may be taken place in a 

smaller area, but its impact may be significant on the large scale flow. Tto illustrate it we give the following 

example:- 

 Let a small region be conditionally unstable.  Now, in this region moist convection is taking place 

i.e. moist air parcel is rising.  Now at a level where all the moistures inside the air parcel has condensed 

releasing latent heat.  That released Latent heat, which may be due to a sub grid scale physical process, viz, 

moist convection, will in turn heat up the atmosphere at that level, which may affect the temperature at the 

grid point. 

 Thus, we see that though a physical process is capable of escaping from being caught at the grid 

points, it affects the field value at the grids.  So if the effects of sub grid scale physical process cannot be 

incorporated in the NWP  model, then forecast issued by NWP is definitely going to be wrong. 

 

Parameterization of sub grid scale physical processes in the PBL. 

 

 To parameterize the sub grid scale physical processes in the PBL first we should know that what 

sub grid scale physical process is taking place in the PBL.  The only sub grid scale physical process taking 

place in PBL is the vertical eddy transport (Order of magnitude of the horizontal eddy transport is very less 

compared to the vertical eddy transport.). 

 Again the method of parameterization of eddy transport depends on the nature of PBL. 

 

 

The vertical profile of the horizontal components of the mean wind using the 

paramaterisation scheme. 
 

 For the special case of horizontally homogeneous turbulence above the viscous sub-layer, 

molecular viscosity and horizontal turbulent flux divergence terms can be neglected. The mean horizontal 

equations of motion then become 

( )
z
wuvf

x
puV

t
u

∂
′′∂

−+
∂
∂

−=∇+
∂
∂ )(1.

0ρ

rr
……(4.12) 

( )
z
wvuf

y
pvV

t
v

∂
′′∂

−−
∂
∂

−=∇+
∂
∂ )(1.

0ρ

rr
……(4.13) 

For the mid latitude synoptic scale system, we know that to a first approximation, acceleration term may be 

neglected as compared to the Coriolis force and Pressure gradient force terms. Out side the PBL, this 

approximation simply results into geostrophic balance. Inside PBL also the acceleration terms are still 

small compared to the Coriolis force and Pressure gradient force terms, but the turbulent flux term must be 
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retained. So,  there is an approximate  balance in the PBL between the pressure gradient force,Coriolis 

force and the eddy stress of the mean flow. 

 

Thus we have, 
z
wuvvf g ∂
′′∂

−−=
)()(0 ……(4.14) 

           
z
wvuuf g ∂
′′∂

−−−=
)()(0 ……(4.15) 

 

Parameterization of eddy stress in an unstably stratified PBL. 

 

As we know in such case PBL is dominated by convective turbulence.  Due to convection, the PBL  is well 

mixed i.e. the mean quantities remain almost invariant with height in the PBL. In such case to a first 

approximation it is possible to treat the layer as a slab, in which mean horizontal wind, potential 

temperature remains invariant in the vertical and turbulent fluxes vary linearly with height. For simplicity, 

one can assume that at the top of CBL, turbulent vanishes. Observations indicate that the surface 

momentum flux can be represented by a bulk aerodynamic formula 

( )uvuCwu ds
22)( +−=′′ ….(4.16) 

 and ( )vvuCwv ds
22)( +−=′′ ….(4.17).   So integrating equations (4.14) and (4.15) in the vertical 

between the bottom [generally taken at Z =0 ] and top of the boundary layer, we obtain 

( )uvu
hf

C
v d 22 +=  ….(4.18) 

And fh
C

uu d
g −= …. (4.19), where h is the height of the boundary layer. 

 

Parameterization of eddy stress in a stably stratified PBL. 

 

 In a stably stratified PBL, the mean quantities do vary in the vertical.  In such case vertical eddy 

tranport of any quantity ‘S’ is parameterized using K-theory/similarity theory /flux-gradient theory. 

 

 According to this theory, vertical eddy transport of any physical quantity is proportional to the 

vertical gradient of the mean of that quantity and directed down the gradient, i.e., 

z
uKwu m ∂
∂

−=′′  …. (4.19), 
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z
vKwv m ∂
∂

−=′′  …. (4.20)  

and 
z

Kw h ∂
∂

−=′′ θθ …. (4.21), where, mK and hK are constants, known as eddy coefficients.  In this 

theory they are treated to be invariant in the vertical, which is a limitation of this theory. 

 

Mixing length theory: 

 

 This theory was proposed by Prandtl.  This theory is for a stably stratified PBL. 

 We consider an eddy in the PBL, initially embedded in the mean flow at the same level.  If the 

eddy is displaced vertically, then it will carry the physical properties of the mean flow of the old level.  

After some eddy vertical displacement, say, ''l′ , the eddy mixes with the mean flow at a new level,   

imparting all its physical properties  to it.  This causes a fluctuation in the physical properties at the new 

level. 

As per mixing length theory, fluctuation in the physical property is proportional to ''l  and to the 

vertical gradient of the mean of the physical property, i.e. for an arbitrary physical property ‘S’ we have 

z
SlS
∂
∂′−=′ . We know that in the PBL the order of magnitude of the vertical motion of mean flow is 

comparable with that of horizontal motion, so, ,Vw ≈ where, ( )2
1

22 vuV += . 

Hence, 
z
V

z
SlwS

∂
∂

∂
∂′−=′′ 2 …..(4.22). 

 

Again from K- Theory, we have,  

 

z
SKwS
∂
∂

−=′′  

Combing these two theories, we have, 
z
VlK
∂
∂′= 2 ….(4.23). The parameter 2lL ′= , is known as 

mean mixing length. It is analogous to mean free path in the kinetic theory of gas. It is a measure of the 

eddy size. 

Thus the value of K is large for large eddies and for large vertical shear of mean horizontal wind. Thus 

eddy transfer, is more for larger eddy greater vertical shear of horizontal wind. 
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Ekmann layer  

 It is also known as entrainment layer. In this layer there is approximately a balance between the 

pressure gradient force, coriolis force and eddy stress. Using the geostropic approximation at the top of 

PBL and  from equations (4.19) & (4.20) we have  

2

2

)(0
z
uKvvf mg ∂

∂
+−= …..(4.24) 

and   2

2

)(0
z
vKuuf mg ∂

∂
+−−=  …..(4.25) 

 

The above equations are solved using the following boundary conditions: 

(1). 0)()( == zvzu at 0=z   

(2). As guuz →∞→ ,  and gvv → . 

Adding equation (4.24) with i  ( 1−= ) times the equation (4.25) results into 

g
mm

C
K

fiC
K

fi
z
C −

=−
∂
∂

2

2

….(4.26), where, ivuC +=  and ggg ivuC += . 

The general solution of (4.25) consists of two parts, Viz., the complementary function (CF) and the 

particular integral (PI). 

[ ] [ ]ziBziACF γγ )1(exp)1(exp +−++= …..(4.27), where, 
mK

f
2

=γ . 

gg
m

m

CC
K
if

K
ifD

PI =−
−

= )(1
2

…..(4.28). 

Thus general solution is given by,  

[ ] [ ] gCziBziAC ++−++= γγ )1(exp)1(exp ….(4.29).  

The arbitrary constants A and B are determined from boundary conditions (1) and (2). 

Accordingly, 0=A and gCB −= . 

Hence, the particular solution is given by 

{ }[ ]ziCC g γ)1(exp1 +−−= ….(4.30).  

Now separation of the real and imaginary part on both sides of equation (4.30) results into, 

( )[ ] ( )zevzeuu z
g

z
g γγ γγ sincos1 −− −−= …..(4.31) 

( ) ( )[ ]zevzeuv z
g

z
g γγ γγ cos1sin −− −+= …..(4.32) 
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The above two equations give the vertical profile of mean horizontal wind in the Ekmann layer. 

From the above two equations it is evident that , 

z
ggg eVvvuuR γ22222 )()( −=−+−=  

z
g eVR γ−=∴ …..(4.33). 

From (4.33) it is evident that if R  [i.e., if )( guu − and )( gvv − ] be plotted on a plane at different level, 

then after joining  the points taken in order, we get a spiral, which is known as Ekmann Spiral. 

If the axes of co-ordinates are rotated in such a way that , x-axis becomes parallel to the isobars, then 

0=
∂
∂

x
p

and hence, 01

0

=
∂
∂

=
x
pvg ρ

. And then equations (4.31) and (4.32) further simplified to 

( )[ ]zeuu z
g γγ cos1 −−= …..(4.34) 

( )zeuv z
g γγ sin−= ……(4.35) 

Depth of Ekmann layer can be obtained from the following consideration: 

At the bottom and top of Ekmann layer, 0=v , which gives , from (4.35), 00)sin( =⇒= zzγ & 

.
γ
π

=z These values of z correspond to bottom and top of Ekmann layer. Hence depth of this layer is 
γ
π

. 

Secondary circulation and Spin down. 

 

 We have seen that at the bottom and top of the Ekmann layer 0=v   and at any intermediate level 

0≠v  .  We know than   v  is the cross isobaric component of the mean flow. 

 Thus throughout the Ekmann layer there is a cross isobaric mass transport which causes 

convergence in a low pressure area and divergence in a high press area.  This is known as frictional 

convergence. 

 Now in case of a low pressure area, the mass converged rises vertically and crosses the top of the 

Ekmann layer.  Thus the mass from the Ekmann layer is being transported to the free atmosphere.  This is 

known as Ekmann layer pumping. 

 The mass which rises vertically loses its vertical momentum after moving a distance in the 

vertical.  The mass which losses its vertical momentum at some level, expands i.e. divergence.  This 

divergence causes an anticyclonic circulation super imposed on the pre-existing cyclonic circulation 

associated with the low press area.  The cyclonic circulation in this case is known as the primary circulation 

and the anticyclonic circulation is known as secondary circulation.  Similar and opposite argument holds 

for a surface high also. 
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 Now the super imposed secondary circulation, having sense opposite to that of primary 

circulation, reduces the speed of rotation of the primary circulation, is known as ‘Spin down’ process. 

 

Mean motion in the layer adjacent to surface: 

Skin layer is characterized by sheared flow forced by molecular viscosity.  In this layer we introduce a 

quantity ‘ ∗u ’ having the dimension of wind velocity.  This is termed as friction velocity.  Eddy stress in 

this layer is expressed in terms of this friction Velocity as follows: 

µcos2
∗=′′ uwu ….(4.36) 

µsin2
∗=′′ uwv …..(4.37), µ is the angle made by eddy stress vector with x-axis. 

using flux gradient theory, we have, 

4
22

2
∗=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ u

z
v

z
uKm ….(4.38) 

Dimensional analysis of the above results into, 

zkuKm ∗= …..(4.39), k is called Von-Kerman constant. 

Thus we have from equations (4.38) & (4.39), 

2
∗∗ =

∂
∂ u

z
Vzku  

kz
u

z
V *=
∂
∂

⇒ ….(4.40), where, 

22

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
∂
∂

z
v

z
u

z
V

 is the magnitude of vertical 

shear of mean horizontal motion. 

Integrating (4.40) vertically from 0zz =  to an arbitrary level, say, z , in PBL we obtain, 

0

ln)(
z
z

k
uzV ∗= …..(4.41), where, 0)( 0 =zV  and 0z  is a constant, known as Roughness length.  It   

may be interpreted physically as “From z = 0 to z = 0z , the surface is so rough that it does not allow any 

mean motion”. 

Oceanic Ekmann layer: For the oceanic Ekmann layer, the horizontal components of pressure gradient 

can be neglected as compared to vertical pressure gradient, because the horizontal pressure distribution 

over the ocean is almost uniform in absence of any system. 

 So, to a first degree approximation, there is a balance between Coriolis force and eddy stress, i.e., 

we have, 

z
wuvf

∂
′′∂

−≈
)(0  ….(4.42) 

z
wvuf

∂
′′∂

−−≈
)(0 …..(4.43). 
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Again using K- theory for ocean, we have, 

z
uKwu w ∂
∂

−=′′  and 
z
vKwv w ∂
∂

−=′′ . Using these two results and by (4.43)+ i (4.42), we get, 

02

2

=−
∂
∂ C

K
if

z
C

w

, where, viuC += . 

The general solution of the above 2nd order ordinary homogeneous differential equation may be given as, 

])1(exp[])1exp[( ziBziAC ww γγ +−++= ….(4.44), where, 
w

w K
f

2
=γ  and BA, are arbitrary 

constants of integration, to be determined from the following boundary conditions: 

BC 1: The ocean bottom is assumed to be at an infinite depth below mean sea level where the ocean current 

is assumed to be ceased, i.e., as −∞→z , both )(zu  and )(zv 0→ . This condition leads to 

0=B ….(4.45). 

BC 2: At the ocean surface, stress exerted by surface wind on ocean is equal and opposite to that exerted by 

ocean on wind. 

Now the components of surface wind stress exerted on ocean are respectively 

( )
0

0
=

= ⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=′′−
z

mszs z
uKwu ρρ and ( )

0
0

=
= ⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

=′′−
z

mszs z
vKwv ρρ , where, sρ  is air density at 

surface. Now from (4.34) and (4.35) we have, g
zz

u
z
v

z
u γ=⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

== 00

. Hence both the components 

of surface wind stress exerted on ocean are equal to 0τγρ =gsm uK (say). 

Now the components of ocean stress on surface wind are respectively, 

( )
0

0
=

= ⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=′′−
z

wwszws z
uKwu ρρ and ( )

0
0

=
= ⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

=′′−
z

wwszws z
vKwv ρρ  where, wsρ is density of 

ocean water at surface, wK is exchange coefficient for ocean water and vu , are components of ocean 

current. 

Hence following BC 2 we have, )1(0

0

i
Kz

C

wswz

+−=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

= ρ
τ

…(4.46). Using (4.44), (4.45) and (4.46), 

we have, 
wwswK

A
γρ

τ 0−=  (Constant)……(4.47). 

Hence, using (4.47) and (4.45) in (4.44). we have, 
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[ ])sin()cos()exp(])1exp[()()()( 0 πγπγγγ
γρ

τ
+++=+−=+= zizzEzi

K
zvizuzC wwww

wwsw

where,  
wwswK

E
γρ

τ 0= . 

Hence, the mean ocean current in the oceanic Ekmann layer is given by, 

)()exp()( πγγ += zCoszEzu ww  ….(4.48) 

)()exp()( πγγ += zSinzEzv ww …..(4.49). 

Conventionally, the Ekman layer depth Eh is defined as the depth where the current direction becomes 

exactly opposite to the surface current direction. 

Hence we have,  

[ ])0(ˆ)0(ˆ)(ˆ)(ˆ vjuihvjhui EE +−=+ λ ; λ being a scalar constant. 

Equating ĵ component on both sides, we obtain, 0)()exp( =+πγγ EwEw hSinhE
w

Eh
γ
π

−=⇒ . 

Now if yx MM , are respectively the wind driven mass transport in the oceanic Ekman layer along x & y 

axes respectively, then, 

dzzuM
Eh

wsx )(
0

∫
−

= ρ  and dzzvM
Eh

wsy )(
0

∫
−

= ρ . 

Hence, ( )
w

ws

h
wsyx

iedzzvizuiMM
E

γ
ρ

ρ
π

2
)1()()(

0 −
=+=+

−

−
∫ . 

Hence, 
w

ws
x

eM
γ
ρπ

2

−

=  and x
w

ws
y MeM −=−=

−

γ
ρπ

2
. 

 

Now surface wind stress vector sτ
r

is given by,  )ˆˆ(0 jis +=ττr . 

Orientation of the vector M
r

and sτ
r

are given in adjoining figure. From the figure and from the expression 

of these two vectors, it can clearly be shown that sτ
r

is in the first quadrant making an angle 045 with 

positive direction of x-axis where as M
r

 lies in fourth quadrant making an 045 with positive direction of 

x-axis. Hence, sM τr
r
⊥  and it is to the right of sτ

r
. Hence the wind driven mass transport in the oceanic 

Ekman layer is normal to the surface wind stress and it is to the right of surface wind stress in the Northern 

hemisphere. 
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yx MjMiM ˆˆ +=
r

 

0)ˆˆ( ττ jis +=
r

x

y
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Chapter-V 
 
Atmospheric energetics 
 
By the term atmospheric energetics, we understand the different forms of energy, the 
atmosphere possesses and conversion between them. 
Atmosphere possesses energy mainly in three forms, Viz., the internal energy, the kinetic 
energy and potential energy. 
Atmospheric internal energy: It is due to heating of the atmosphere. To obtain an 
expression for global atmospheric internal energy, let us consider unit mass at temp T0 K. 
Then internal energy of this unit mass is TCV . Now consider an infinitesimal volume 
‘ σd ’  with density ‘ ρ ’ of the atmosphere. This volume is so small that the density ρ  
practically remains invariant in it. So its mass is σρ d . So, the internal energy of this 
infinitesimal volume is .σρ dTCV  

Hence the internal energy of the global atmosphere is ∫∫∫
σ

σρ TdCV = I , say. 

Atmospheric potential energy: It is due the vertical position of the centre of gravity of the 
atmosphere. The potential energy of unit mass at a height ‘z’ above the mean sea level is 
gz . Hence following the same argument as in I.E, we have the expression for potential 
energy of global atmosphere as ∫∫∫

σ

σρ dzg = P, say. 

Atmospheric kinetic energy: The kinetic energy of the atmosphere is due to different 

atmospheric motion. Kinetic energy of an unit mass moving with velocity ‘ vr ’ is .
2
.vv rr   

Hence the expression for kinetic energy for global atmosphere is  ∫∫∫
σ

σρ dvv
2
.rv =K, say. 

Energy equations: 
The global internal energy equation is given by  

( )∫∫∫∫∫∫ ∇−=
σσ

σσρ dvpdQ
dt
dI rr& . ….(1), where, 

dt
QdQ =& represents the rate of heating. 

The above equation tells us that the change in global internal energy is due to net 
heating/cooling of the atmosphere and due to divergent/convergent motion in the 
atmosphere. Net heating/ cooling leads to an increase/decrease in temperature, which 
again leads to an increase/decrease in global I.E. 
Now to understand how divergence/convergence leads to an increase/decrease in I.E, let 
us see the following flow charts: 
Divergence→Expansion→Cooling→Fall in I.E. On the other hand,  
Convergence→ Compression→Heating→Rise in I.E. 
The global potential energy equation is given by, 

∫∫∫=
σ

σρ dwg
dt
Pd ….(2). This equation tells that any change in global potential energy is 

due net vertical motion. Net rising/sinking motion leads to an increase/decrease in P. 
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The global kinetic energy equation is given by, 

( ) ∫∫∫ ∫∫∫∫∫∫∫∫∫ +−∇+∇−=
σ σσσ

σρσρσσ dvFwdgdvpdvp
dt
dK rrrrrr

..).( ….(3) 

In the above equation the first term on the right hand side represents the convergence of 
flux of energy due to work done by/against the pressure force and the last term represents 
the rate of work by frictional or dissipative forces. Other two terms, viz., the second and 
third terms have already appeared in the global internal energy equation and in global 
potential energy equation respectively, but with respective opposite sign. The last term 
represents the destruction of K.E due to work done against the dissipative forces. 
Again from Gauss divergence theorem, we know that ∫∫∫∫∫ =∇

S
n dsvpdvp

σ

σ)(. rr
, where, 

nv  is the component of vr normal to the surface ‘ S ’enclosing the volume ‘σ ’. If the 
global atmosphere is considered to be an isolated closed system, then, 0=nv . So the first 
term in equation becomes zero. 
From equation (1) and (3) it follows that for a given sign of ( )∫∫∫ ∇

σ

σdvp rr .  global kinetic 

energy / global internal energy will be generated at the expense of global internal energy / 
global kinetic energy. So, this term may be thought of representing the conversion of 
internal energy to kinetic energy. We denote it by C(I,K).  
Hence, =),( KIC  ( )∫∫∫ ∇

σ

σdvp rr .  or =),( IKC ( )∫∫∫ ∇−
σ

σdvp rr . .  

Already we have seen how divergence or convergence results in decrease or increase in 
I.E. Also we know that due to divergence or convergence, downstream wind speed 
increases or decreases, i.e., global K.E increases or decreases. Thus conversion between 
these two forms of atmospheric energy is due to the divergent flow of the atmosphere. 
Similarly from equations (2) and (3), it follows that for a given sign of ∫∫∫

σ

σρ dwg  

global kinetic energy / global potential energy will be generated at the expense of global 
potential energy / global kinetic energy. So, this term may be thought of representing the 
conversion of kinetic energy to potential energy. We denote it by C(K,P).  
Hence, =),( PKC  ∫∫∫

σ

σρ dwg  or =),( IKC ∫∫∫−
σ

σρ dwg . We have already seen that a 

net upward or downward motion leads to an increase or decrease in global P.E. Also a net 
upward or downward motion causes convergence or divergence, which again leads to 
decrease or increase in global K.E. Thus conversion between these two forms of 
atmospheric energy is due to net vertical motion in the atmosphere. 
Adding equations (1), (2) and (3) we obtain, 

∫∫∫ ∫∫∫+=
σ σ

σρσρ dvFdQ
td
Ed rr& . ….(4), where, PKIE ++= . 

In equation (4), the first term represents the generation of internal energy by net heating 
of the atmosphere and the second term represents the destruction of K.E due to work 
done against the dissipative forces. They are respectively denoted by )(IG and )(KD− . 
Thus equation (4) may be written as  
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)()( KDIG
td
Ed

−= ….(5). 

From equation (5) it is clear that for the source of total atmospheric energy, )(IG should 
be positive and more, i.e., there must be net heating in the atmosphere. Again net heating 
is by Solar energy. Thus the Sun is source of all atmospheric energy. 
Now let us consider the kinetic energy equation for horizontal motion. First of all 0=w . 

So, we have, ).()( KDKS
dt

dK h −= Here, 
2
. hh

h
vv

K
rr

= is the kinetic energy for horizontal 

motion and ( )∫∫∫ ∇=
σ

σdvpKS h
rr .)( . Now question which region should be a source for 

horizontal kinetic energy. Now in a source region for horizontal kinetic energy there 

should be production of horizontal kinetic energy, i.e., .0〉
dt

dK h Again for 
dt

dKh  to be 

positive, ( )∫∫∫ ∇=
σ

σdvpKS h
rr .)(  should be positive and large, which requires p  to be 

high and 0. 〉∇ hvr
r

 . This conditions exist in the region of sub-tropical anticyclone which is 
characterized by high pressure and divergence. Thus the belt of sub-tropical anticyclone 
is the source for horizontal kinetic energy. 
Energetics in a hydrostatic and stably stratified atmosphere: 
By the hydrostatically stable atmosphere we simply understand that there is no net 
vertical acceleration and by stable stratification we understand that in the atmosphere 
heavy colder air is below the light warmer air or the potential temperature (θ ) increases 
with height. Now it will be shown that in such an atmosphere internal energy is 
proportional to potential energy. This will be established by showing below that any 
change in I.E causes a similar change in P.E and vice-versa.  
Increase or decrease in I.E→Increase or decrease in Temperature (T)→Expansion or 
contraction of an air column of unit cross sectional area→Rising or sinking 
motion→Increase or decrease in P.E. Similarly, 
Increase or decrease in P.E→ Rising or Sinking motion→Convergence or 
divergence→Increase or decrease in I.E. 
Thus any change in I.E causes a similar change in P.E and vice-versa. Hence internal 
energy is proportional to potential energy. 
The above can be established mathematically also as shown below: 
We consider an air column with unit cross-sectional area. The P.E of this air column is 
given by 

IP

I
C
RdzTC

C
RdzTRdzpzpddpzdzzgP

V
V

VPS

∝⇒

===+−=−== ∫∫∫∫ ∫ ∫
∞∞∞∞

0000

0 0

0

)( ρρρ
 

Concept of Available potential energy (APE):  
We have seen that in a stably stratified and hydrostatically stable atmosphere I.E. 

is proportional to the P.E. In such an atmosphere the centre of gravity of the atmosphere 
is at its lowest elevation. Hence in such condition the atmosphere possesses minimum 
P.E. and hence it possesses minimum I.E. also. So the sum of these two forms of energy 
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will be minimum in a stably stratified and hydrostatically stable atmosphere. Sum of I.E 
and P.E. is known as total potential energy (TPE).In the reference state, the atmosphere 
possesses minimum TPE. In such condition the potential temperature(θ) lines are quasi-
horizontal, with θ increasing upwards.  

But in a part of the globe, the observed state of atmosphere is not necessarily 
stably stratified and hydrostatically stable. So, the TPE in the observed configuration 
exceeds that in reference configuration. The excess TPE in the observed configuration 
makes the atmosphere unstable. In the observed configuration, the θ lines are quasi-
vertical instead of quasi-horizontal, keeping warm air, cold air side by side. As a natural 
tendency the atmosphere in the observed configuration of that part of the globe tends to 
be stabilized. This requires rising motion of warm air and sinking motion of cold air, i.e., 
a vertical circulation is required. The necessary kinetic energy to drive this vertical 
circulation is provided by the excess TPE in the observed configuration over that in 
reference configuration. This excess TPE in the observed configuration over that in 
reference configuration is only available for conversion into kinetic energy and is known 
as available potential energy (APE). 

Thus, REFOBS TPETPEAPE −=  . It can be shown that, dydxdp
P
TAPE

sP
∫∫ ∫

′
∝

0 2

σ
, where, σ 

is a measure of static stability, P  is the mean pressure at any level and 2T ′  is the square 
of the deviation from mean (areal) temperature at different levels. So, it follows that APE 
in a barotropic atmosphere is zero. From the above expression of APE, it follows that as 
the APE over a region increases with the increase in horizontal temperature gradient. So, 
it’s a measure of baroclinity of the atmosphere over that region. 
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Chapter-VI 

 

GLOBAL ANGULAR MOMENTUM BUDGET 

 

Some useful concepts: 

Momentum:  It is the motion due to combined effect of mass (m) and velocity 

( vr ).  It is a vector quantity given by  vm r  . For unit mass momentum is vr . 

Angular momentum:  It is a vector quantity defined by moment of momentum. 

The word ‘moment’ arises in case of rotation only. 

Thus if an object of mass (m) and velocity (vr ) rotates about a fixed point or about 

an axis (called axis of rotation), then its angular momentum is given by vmr rr
× , where, rr  

is the position vector of the rotating object. It is a vector quantity. 

Now consider a stationary object placed on a circular ring rotating with angular 

velocity Ω
r

  about an axis of rotation. Then, its linear velocity is rr
v
×Ω  

In such case, angular momentum of the object will be )( rr rvr
×Ω×  = 2rr

r
Ω . 

Newtons Law: 

From the second law of motion we know that  

F
dt

vmd rr

=
)( , F

r
being the applied force. 

So, Fr
dt

vmdr
rr

r
v ×=×

)(  

Or, Fr
dt

vmrd rr
rr

×=
× )( . LHS is the rate change of angular momentum and RHS is 

the torque applied by the force F
r

. Whenever a force F
r

 is applied to a body, then a 

tendency of rotation about an axis is generated in the body. This tendency of rotation of 

the body about that axis is called the torque applied by that force F
r

 about that axis.  

Thus Newton’s law states that rate of change of angular momentum about an axis 

is equal to the torque applied by the forces.  Thus if the vector sum of torque is zero, then 

angular momentum remains conserved.  This is known as conservation of angular 

momentum. 

Governing equation for global angular momentum budget:  
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We consider an unit mass at latitude φ, with zonal velocity u . Then its absolute 

zonal angular momentum about the earths axis of rotation   is ( ) φϕ coscos aau+Ω = M 

(say).  To find out an expression for global angular momentum, we consider an 

infinitesimal volume, σd  with density ρ of the atmosphere. So, the angular momentum 

of this infinitesimal volume is σρ dM . Thus the angular momentum of the entire global 

atmosphere is given by, ∫∫∫=
σ

σρ dMA  . 

Then the governing equation for global angular momentum budget is given by  

∫ ∫ ∫∫ ∫∫ ∫ ∫
∞∞∞

+∆−∇−=
∂
∂

0

2/ 2

0

2/

00

2/ 2

0 000

).(
π

φ

ππ

φ

π

φ

π

φλρφφλρ dzddrFddzprdzddVM
t
A rr

 

The first term  is known as the meridional transport of angular momentum, which 

signifies the mechanism of transporting zonal angular momentum in the meridional 

direction (N – S). 

The second term, which arises due to E-W pressure difference along a latitude 

circle, is known as mountain torque term.  It is named so, because pressure difference 

‘ p∆ ’ is mainly due to the difference of pressure between windward and leeward side of a 

section of mountain along that latitude circle. 

The third term is known as frictional torque term, and is due to the torque 

produced by the frictional force. 

Discussion about different terms: 

Meridional transport of angular momentum: It can be shown that, this term is 

dpvu
g

adpv
g

adpvu
g

a

sss PPP
∫∫∫ ′′+

Ω
+=

000 22 cos2cos2cos2 φπφπφπ , where, 

∫
0cos2

sP

dpvu
g

a φπ is called the drifting term,  

∫
Ω 022 cos2

sP

dpv
g

a φπ is called the omega transport term  and  

dpvu
g

a

sP
∫ ′′
0cos2 φπ is called the eddy transport term. 
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The drifting term signifies the meridional transport of mean zonal angular 

momentum across the latitude circle 0φ  by the mean meridional circulation. 

The omega transport term signifies the meridional transport of zonal angular 

momentum, possessed solely due to earths rotation ( φcosaΩ ), by the mean meridional 

circulation. 

The eddy transport term signifies the meridional transport of eddy zonal 

momentum by eddies. For  north east-south west oriented westerly troughs, there is less 

equator ward transport of eddy zonal angular momentum to its rear and more pole ward 

transport of eddy zonal angular momentum ahead of it. So there is a net pole ward 

transport of eddy zonal angular momentum for such oriented westerly troughs. Thus NE-

SW oriented westerly troughs transports eddy zonal angular momentum. 

 Mountain torque term:  As already been mentioned p∆  is due to the difference of 

pressure between the windward and lee ward side of a mountain barrier. 

It is known that, based on the direction of prevailing zonal component, the entire 

global atmosphere may be categorized into two regimes, viz., the westerly regime and 

easterly regime. 

In the westerly regimes wind ward side is to the west of the barrier and the 

leeward side is to the east of the barrier. Similarly, in the easterly regimes wind ward side 

is to the east of the barrier and the leeward side is to the west of the barrier. 

Since p∆ is measured as, WestEast PPp −=∆ , hence as shown in the adjoining figure, 

in the westerly regimes, p∆ < 0.  Now as the second term is accompanied with a minus (-) 

sign, hence the contribution of this term is positive in the westerly regimes and it is 

negative in the easterly regimes. 

Hence the presence of mountain enhances westerly angular momentum in the 

westerly regimes and it reduces that in the easterly regimes. 

Frictional torque term:  In the easterly regime, frictional force reduces the strength of 

easterly wind, that in turn reduces easterly momentum and easterly angular momentum.  

This is equivalent to say that in the easterly regime, friction increases the westerly 

angular momentum. Hence, there is a net gain in the westerly angular momentum in the 
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easterly regimes, due to friction. Following the similar argument it can be said that there 

is a net loss in the westerly angular momentum in the westerly regimes, due to friction. 
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Hydrodynamic Instability 
 
Definition: A mean flow field is said to hydro dynamically unstable if a small 
perturbation, introduced into the mean flow, grows spontaneously by extracting energy 
from the mean flow. 
Classification of hydrodynamic instability: 
Categorization of hydrodynamic instability may either be based on the state of the mean 
flow or on the mode of perturbation introduced. 
Based  on the former, hydro dynamic instability may be  dynamic or static according as 
the mean flow is there or not.  While discussing Barotropic instability, Baroclinic 
instability or Inertial instability, we always consider a mean flow   having some speed.  
These are examples of dynamic instabilities.  But while discussing Brunt Vaisala 
instability, we need not to take care of the mean flow.  This is example of static 
instability. 
 Based on the later, hydro dynamic instability may be of two types, viz., parcel 
instability and wave instability.  Some times perturbation may be introduced as a 
displacement to an air parcel and   it is examined under what condition the parcel is 
moving away from its mean position.  This is known as parcel instability.  Brunt-Vaisala 
instability and Inertial instability are examples of parcel instability.  In another case, the 
perturbation is given in the form of a wave super imposed on a mean flow and examined 
under what conditions the wave is being amplified.  This is known as wave instability.  
Barotropic and Baroclinic instabilities are examples of wave instability. 
 The above categorization is shown below in a tabular form: 

Hydrodynamic Instability 
Based On The State Of Mean Flow Based On The Mode Of Perturbation 
Static Instability 
Example: Brunt 
Vaisala instability. 

Dynamic Instability 
Examples: Inertial, 
Barotropic, 
Baroclinic 

Parcel Instability 
Inertial, Brunt 
Vaisala 

Wave Instability 
Barotropic, 
Baroclinic 

 
Brunt Vaisala instability: 
 
 To analyse the Brunt Vaisala instability, we consider  an air parcel embedded in a 
static mean flow.  Let the parcel be displaced vertically. 
 
If Pρ  and Eρ  are the densities of air inside the parcel and that of environmental air at 
new position then the net buoyancy force acting on the air parcel is gV PE )( ρρ − ; where 

is the volume of air parcel.  Thus considering only the buoyancy force, the vertical 
momentum equation of the air parcel is  
V

 

P

PE

P

PE g
V

gV
dt
dw

ρ
ρρ

ρ
ρρ −

=
−

=
)(

……(1). Since pressure across the boundary of the 

parcel is continuous,  it follows that EEPP RTRTP ρρ == ; Where Tp and TE are the 
temperature of the air parcel and that of environmental air and ‘P’ is the pressure  across 
the boundary of air parcel.  
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Hence it ‘ς ’ denotes the vertical displacement, then we have 
 

E

EP

T
TTg

dt
d −

=2

2ς ……(2) 

Now, ....)0()(
0

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+=
=z

P
PP z

TTT ςς  

  +Γ−= PPT ς)0( …. 
It is assumed that a dry air parcel follows a dry adiabatic line and a moist air parcel 
follows a saturated (pseudo) adiabatic line. Hence PΓ is either dry adiabatic lapse rate 
(DALR) or saturated adiabatic lapse rate (SALR). So we may write aP Γ=Γ ; where, ‘a’ 
stands for adiabatic, dry or saturated, whatever is applicable. 
Hence, aPP TT Γ−= ςς )0()(  (neglecting higher order terms).  
Similarly, the environmental temperature at ς=z , is given by, 

EEE TT Γ−= ςς )0()( , where, is the environmental lapse rate. EΓ
Substituting these expressions of )(ςPT and )(ςET in (2), we obtain 
 

ςς 2
2

2

N
dt
d

−= ……(3), where, 
E

EP

T
gN

Γ−Γ
=2 .  

The above equation has a stable sine/cosine solution of N2 > 0 and has an unstable 
exponential solution if N2 <0. 
 
 Thus the vertical displacement of the parcel is stable if N2 > 0 i.e, if the 
environmental lapse rate is less then  the adiabatic lapse rate other wise unstable if 
environmental lapse rate exceeds that of parcel. N is known as Brunt Vaisala frequency. 
 
Inertial instability:   We consider an air parcel embedded in a mean zonally geostrophic 
flow.  Suppose, the air parcel be displaced meridionally from , to 0yy =

yyy δ+= 0 during the period 0tt = and ttt δ+= 0 .  Then at the new position, the 
horizontal equation of motion can be written as, 

dt
dyffv

dt
du

== ……(4) 

gfufu
y
pfu

dt
dv

+−=
∂
∂

−−=
ρ
1 ….(5). 

Integrating (4) between initial and final position we obtain, 
[ ])()()()( 0000 tyttyftuttu −+=−+ δδ  

[ ] yfyyyfyuyyu δδδ =−+=−+⇒ 0000 )()( ……(6) 
Writing the equation (5) at yyy δ+= 0 , we obtain, 

[ ])()( 00 yyuyyuf
dt
dv

g δδ +−+−=  
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 [ ]
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+−++−=

=

....)(...)(
0

00 y
y

u
yuyfyuf

yy

g
g δδ (Using (6)) 

 
At the initial position the air parcel was embedded in the meanflow, which is zonaly  
geostrophic. Hence, . ( ) )( 00 yuyu g=

Thus at yyy δ+= 0 , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
−−=

y
u

fyf
dt
dv gδ ……(7) 

Multiplying both sides of (7) by )( y
dt
dv δ= and then integrating between initial and final 

position, we obtain, 

2
)( 2yf

dt
Kd

a
δς−=

′
…..(8), where, K ′ is the eddy meridional kinetic energy of the parcel 

and aς  is the absolute vorticity of the mean flow. Since the RHS of (8), represents the 
rotational K.E of the mean flow, it appears that perturbation grows by extracting 
rotational K.E of the mean flow. 
In the northern hemisphere f > 0. Thus the K.E of the parcel will increase with time if 

0<aς , i.e., if the mean flow has absolute anticyclonic vorticity and will decrease if 
0>aς , i.e., if the mean flow has absolute cyclonic vorticity and neutral if 0=aς . 

In the southern hemisphere, f < 0. Thus the K.E of the parcel will increase with time if 
0>aς , which corresponds to absolute anticyclonic vorticity in the southern hemisphere 

and will decrease if 0<aς , which again corresponds to absolute cyclonic vorticity in the 
southern hemisphere and neutral if 0=aς . 
Thus, a mean flow with cyclonic vorticity is inertially stable and with anticyclonic 
vorticity is inertially unstable. The result may be interpreted as follows: 
 A mean flow with a cyclonic absolute vorticity is itself active enough so that it 
cannot spare its energy to grow perturbation in it, where as that with an anticyclonic 
absolute vorticity is not active enough, so that it can spare its energy to the perturbation 
to grow. 
 
Barotropic Instability: 
 
Definition:  A zonal mean flow field is said to be barotropically unstable if a small 
perturbation, introduced in it, grows spontaneously by extracting kinetic energy from the 
mean flow. 
 
Barotropic instability analysis: 
 
 To, analyse the barotropic instability; we start with the non divergent barotropic 
model.  The governing equation for this is given by 

βςςςς v
y

v
x

ufV
t

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

−=+∇−=
∂
∂ )(.

rr
……(1) 
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We apply have perturbation technique, following which we split the fields into basic and 
perturbation parts as below: 

),,()( tyxuyuu ′+=  
),,(0 tyxvv ′+=  

Hence, ςςς +′=−
∂
′∂

−
∂
′∂

=
∂
∂

−
∂
∂

=
dy
ud

y
u

x
v

y
u

x
v  

Substituting in the above governing equation, we obtain, 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−′−

∂
′∂

−=
∂
′∂

2

2

dy
udv

x
u

t
βςς ……(2) 

Here, we introduce, perturbation stream function, ),,( tyxψ ′ , such that, 

x
v

∂
′∂

=′
ψ and 

y
u

∂
′∂

−=′
ψ , so that,  ψς ′∇=′ 2

Hence (2) reduces to,  

02

2
2 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

∂
′∂

+′∇⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

dy
ud

xx
u

t
βψψ …..(3) 

 
We seek the wave solution for (3) like 

)()(),,( tkxieyAtyx νψ −=′ …..(4) 
Subject to the boundary condition 

0)( =±dA ……(5) 
Substituting (4) in (3) we have 
 
( )( ) ( ) 02 =−++−+− uikAuikiAAk &&&& βν …..(6) 
 
Multiplying both sides of (6) by *A ,  the complex conjugate of A, we obtain 
 

( ) ( ) ( ) 02
2*

22 =−++−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+− uAkku

dy
dA

dy
AAdAk &&
&

βν ……(7) 

 
 
Integrating the above with respect to ‘ ’ betweeny dy ±= , we obtain 
 

( )dyu
cu

A
dy

dy
dAAk

d

d

d

d
∫∫
+

−

+

−

−
−

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+ &&β
)(

22
22 …….(8) 

Now, , where, and are respectively the real and imaginary part of the 
phase velocity  So, 

ir iccc += rc ic
'.'c ( ) ir iccucu −−=− . Multiplying the numerator and denominator 

of the integrand on RHS of (8) by the complex conjugate of )( cu − , we obtain, 
 

 4



Lecture notes on Dynamic Meteorology  for the Advanced Met. training course prepared 
by Dr.Somenath Dutta. 
 

( )[ ]
[ ] ( )dyu

ccu
iccuA

dy
dy
dAAk

d

d ir

ir
d

d
∫∫
+

−

+

−

−
+−

+−
=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+ &&β22

22
22

)(
 

L.H.S of the above equation is a pure real number, hence the R.H.S has to be so, which 
requires 

 ( )
( )

022 =
+−

−
∫
+

−

dy
ccu

uc
d

d ir
i

&&β . Since, ,0≠ic hence, ( )
( )

022 =
+−

−
∫
+

−

dy
ccu

ud

d ir

&&β …..(9). 

 
Since the denominator of the integrand in (9) is a positive definite quantity, hence, it is 
always positive, Thus the above definite integral to vanish, ( )u&&−β mush change sign 
within the limit of integration.  This further requires that there must exist some point, say 

, between , such that cyy = dy ±= ( ) 0=− = cyyu&&β ……(10). This is the necessary 
condition for barotropic instability. Thus for a mean zonal flow to be barotropically  
unstable, the necessary condition is that at same intermediate latitude the mean flow has 
an extreme absolute vorticity. 
Energetics of barotropic instability: To study the energetics of barotropic instability, 
first we will show that in the non-divergent barotropic model the mean kinetic energy 
remains conserved. For that we start with non divergent vorticity equation, 

βςςςς v
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ufV
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Multiplying above by ''ψ , we obtain, 

0.. =
∂
∂

+∇⎟
⎠
⎞

⎜
⎝
⎛ ∇+
∂
∂

∇
x

V
t
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Integrating the above over a volume ''σ ,  consisting of  from dy −=  to , from 
bottom to top of the atmosphere and over an entire wavelength of a barotropic wave, we 
obtain, 

dy =

0=
dt
dK , where, ∇+

∂
∂

≡
rr

.V
tdt

d  and σψψ

σ

dK ∫∫∫
∇∇

=
2
.
rr

. 

Now, if KKK ′+=  , then we have,  

dt
Kd

dt
Kd

−=
′

. Thus, the barotropic instability grows by extracting K.E from the mean 

flow.  
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Baroclinic instability 
For a mean flow to be baroclinic unstable, first of all the mean flow should be baroclinic, 
i.e., there should exist a north-south temperature gradient in the mean. Due to that 
atmosphere possesses a certain amount of available potential energy (APE=I.E+P.E). 
Now if this existing N-S temperature gradient is increased by warming the warm latitude 
& cooling the cold latitude, then APE will go on increasing. Once APE exceeds certain 
threshold value, depending on the prevailing mean flow, the westerly flow becomes 
baroclinic unstable. This instability is demonstrated by waves super-imposed in basic 
westerly flow. Wave patterns are seen in contour field, thermal field etc., as shown in the 
figure 1.  

 
• From the figure following salient features can be seen: 

– Existing N-S temperature gradient gives rise to Zonal Available potential 
energy (AZ). 

– Waves in contour field gives rise to Nly cold air advection to the warmer 
south and Sly warm air advection to the colder north, resulting in a net 
reduction of AZ. 

– Above reduction in AZ gives rise to the generation of eddy Available 
potential energy (AE), due to east-west temperature gradient, as exhibited 
by alternative cold (K) and warm (W) region in the wave. 

– From the figure we also see divergence ahead of contour trough and 
convergence ahead of contour ridge. 

– Divergence causes cooling over ‘W’ and convergence causes warming 
over ‘K’, resulting in a net reduction in AE. 

– The above net reduction in AE is attributed to the generation of eddy 
kinetic energy (KE), required to drive the circulation in the vertical plane, 
as shown in the figure. 

 

D C

L 

H

K 

W K
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Contour troughThermal trough 
Cold 

Warm  
Contour ridge L H

Fig.1:Baroclinic instability 
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– To compensate the net reduction in AE, there must be supply of  cold 
northerly air over cold part (K) of wave and warm southerly air over warm 
part (W) of wave. 

– The above requires that thermal trough must lag behind the contour 
trough. Then only a baroclinic wave grows.  

– It can be shown that thermal trough should lag behind contour trough by 
π/2. 

CISK (Conditional instability of second kind):  
• This instability is a combined dynamic and thermodynamic instability. 
• To understand it we consider a synoptic scale low and the atmosphere above it is 

already conditionally unstable. 
• Due to low there will be large scale moisture convergence and as the atmosphere 

above the low is conditionally unstable, the moist air being positively buoyant 
will rise, cool and condense. 

•  The latent of condensation will cause divergence at upper level, which in tern 
will enhance low level moisture convergence. 

 

L 
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Fig2. 
CISK 
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• The enhanced low level moisture convergence in tern will again enhance heating. 
• Thus there is a co-operative mutual interaction between large scale moisture 

convergence and cumulus scale heating. 
• The above gives rise to a different type of instability, known as CISK.  
• The above has been explained schematically in fig.2. 
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