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Chapter-|
Circulation and Vorticity

Circulation:

Definition:
Circulation is defined as a macro-scale measure of rotation of fluid.
Mathematically it is defined as a line integral of the velocity vector around a

closed path, about which the circulation is measured.

Circulation may be defined for an arbitrary vector field, say, B. Circulation ‘C,’ of

an arbitrary vector field B around a closed path, is mathematically expressed as
a line integral of B around that closed path, i.e., C, :§§I§.df :

In Meteorology, by the term, ‘Circulation’ we understand the circulation of
velocity vector. Hence, in Meteorology circulation around a closed path is given
by C = i§\7. di ....(C1.1). From this expression it is clear that
circulation is a scalar quantity.

Conventionally, sign of circulation is taken as positive (or negative)
for an anticlockwise rotation (or for a clockwise rotation) in the Northern
hemisphere. Sign convention is just opposite in the Southern hemisphere. Since
we talk about absolute and relative motion, hence we can talk about absolute

circulation and relative circulation. They are respectively denoted by C,and C,
respectively and are defined as follows:

C,= fV,.dl .. (CL2)
and C,= §V,.d ...(CL3

Where \/—a and V—r are the absolute and relative velocities respectively.
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Stokes Theorem:-

It states that the line integral of any vector B around a closed path is

equal to the surface integral of VxB.n over the surface ‘S’ enclosed by the

A~

closed path, where n is the outward drawn unit normal vector to the surface ‘S’.
§B-di = [[(VxB)-Aids.

The Circulation Theorems:

Circulation theorems deal with the change in circulation and its cause(s).
For an arbitrary vector field, B the circulation theorem states that the time
rate of change of circulation of B is equal to the circulation of the time rate of

change of B, i.e

This theorem may be applied to the absolute velocity vector (\7a) as well

as to the relative velocity vector (\7r ).

Kelvin’s Circulation theorem:
It is the circulation theorem, when applied to the absolute velocity

(V,) of fluid motion.

So according to Kelvin's Circulation theorem,

d,C d.V, —
if= 2 2.dl L. C1.5).
dt §dt ( )

Proof: We know that C, = §\Taa

SO’%:% v, .di

or, ddf = §dava dl + §v —2.(dl)
or, dd(t: = §ddva di' +§V,.d,V,
or dad?a2§ AA +fd, ( Va-
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Or,

V., - L . .
dia = §data.dl , as the line integral of an exact differential around a

closed path vanishes.

: d,C dC : . :
Conventionally, ;Ita or dtr are known as acceleration of circulation

(absolute or relative).

So, in Meteorology, circulation theorem simply states that the acceleration
of circulation is equal to the circulation of acceleration.

A corollary to Kelvin’s circulation theorem:

We know that equation for absolute motion is given by,

d,V. -, = .
ﬁz—EVp+g +F (C1.6), where symbols carry their usual
Yo
significances.
. GM (r) . L .
Here, §" =——; T Is the gravitational attraction exerted by earth on a
r

unit mass with position vector, ', with respect to the centre of the earth. It is clear
that " is a single valued function of ‘r’. Also it is known that all force fields

which are single valued functions of distance (r), are conservative field of forces.

o

(‘Dynamics of a particle’, by S.L.Lony). Hence, " is a conservative force field. It

is also known that work done by a conservative force field around a closed path

is zero.

Hence, §g*.df =0....(CL.7).

Again, from Stoke’s law we know that for a vector field, B ,

§§.df=”€x§.ﬁds .......... (C1.8)

S

Where S is the surface area enclosed by a closed curve, around which the

circulation of Bis measured, and ‘A’ is the outward drawn unit vector normal to

the surface area S.

So, iﬁ—%?p.df=”?x[—%?p].ﬁds=ﬂm.ﬁds .......... (C1.9)
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Hence, using (C1.6), (C1.7) and (C1.9) in (C1.5), we have for friction less
flow,

daCa :J'.[ﬁpxﬁplﬁds

C1.10
it ( )

We know that in a barotropic atmosphere the density, o, is a function of

pressure only, i.e., p can be expressed as, p=f(p).

Hence, Vp = f'(p)Vp = VpxVp =0, where, 0is null vector.
Therefore, for a frictionless barotropic flow, di‘j%:o ....... (C1.11). Thisis a

direct corollary to the Kelvin's theorem. Hence from Kelvin’'s circulation theorem it
may be stated that for frictionless flow change in absolute circulation is solely due
to the baroclinicity of the atmosphere.

Solenoidal vector and Jacobian:

Suppose, A,B are two scalar functions. Then, Jacobian of these

functions, is denoted by J(A, B) and is given by,

oA oA
J(A,B):gé %:WANB. Also, VAxVB is called A B Solenoidal
x oy

vector and is denoted by, N*A‘B.

So, the vertical component of solenoidal vector is the Jacobian.

Now, it will be shown that, J(A, B) represents change in A(x,y) along the

isolines of B(x,y)and vice-versa.

We have, |J(A B)|= WAx ?B‘ = ‘?A“?B‘sine, where,0 is the angle between

VA and VB. We know that VA, VB are normal to the isolines of

A, Brespectively. Hence the angle between isolines of A B is also 0. If a is the

angle between isolines of Band VA, then 6 = 90°- a. So, |J(A,B)| = ‘?A”?B‘cosa.

Now, WA‘COSO{ represents the magnitude of the projection of VAon the isoline
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of B. As VA represents change of A, hence it follows that WA‘ Cosa represents

the change of A along the isolines of B. Thus, for a given gradient of B, |J(A, B)|
represents the change of A along the isolines of B. Similarly, it can be shown
that for a given gradient of A, |J(A, B)| represents the change of B along the

isolines of A.

The above has been shown in figure 1.1. From this figure it is clear that as
the magnitude of a increases, the magnitude of the change in A(Or B) along the
isolines of B (OrA) increases. Hence, the magnitude of the Jacobian increases
as the angle between the isolines decreases. It is maximum when 6 =0%and is
zero when 6 =90°.

Barotropic and Baroclinic Atmosphere:

Here we shall discuss the salient features of the solenoid vector.

Solenoid vector, denoted by Np,p or N;, isgiven by

—

N,p =VpxVp.... (C1.12) or
N, ,= VT xVp...(CL.13).
When the atmosphere is barotropic, then, there is no horizontal

temperature gradient. Hence in such an atmosphere, VT =0 [6 is the null

vector].

Hence in such an atmosphere, B(? p x@T)z 0.
p

NT,p =0 . Hence VT Il VP

Hence in such case, the isobars and isotherms (or the isolines of density

p ) are parallel to each other. This has been shown in fig.1.2.

But if the atmosphere is not barotropic, then these lines are no longer
parallel, rather they intersect each other. Now, when they intersect, they form
small rectangles like ABCD (shown in fig 1.3). Such rectangles are called
solenoid. It is shown below that the magnitude of Solenoid Vector is equal to the

number of solenoids formed in unit area in the vertical plane.
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Area of a single solenoid ABCD =ah,, where ais the length of the side AB
and h;is the length of the altitude DE, as shown in figure 1.3.

Now, h, =bsin&, where, bis the length of the side AD and & is the angle
between the sides AB and AD.

Hence, area of the solenoid ABCD =absing.

Now, WT x ?p‘ = ‘?Tuﬁp‘sin 0= h—ihilsin 0= Wline , where, h,is the length

of the altitude BF.

So, area absin@ is contained in 1 solenoid.

Hence, unit (= 1) area is contained in numbers of solenoid. So,

absing

the magnitude of above solenoidal vector represents the number of solenoids in
unit area in a vertical plane.

Practically the angle between isobar and isotherms gives a qualitatively
measure of baroclinicity of the atmosphere. Because as the angles are smaller,
the isobars and isotherms are very close to be parallel to each other i.e. the
atmosphere is mostly barotropic. But as the angle increases, the isotherms and
isobars become far away from being parallel to each other i.e. the atmosphere is
mostly baraclinic. Also it is worth to note that as the angles between isotherms
and isobars are smaller, numbers of solenoids are also smaller and if angle
increases, the numbers of solenoids are also increases. These have been shown
in figures (1.4 & 1.5).From the figures 1.4 and 1.5 we can see how the increase
in angle between isobars and isotherms can lead to increase in change in T
along the isobars.

So in the day to day charts to examine the qualitative measure of
baroclinicity we need to estimate only the angle between isobars and isotherms
or in the constant pressure chart we need to examine the angle between contour

lines and the isotherms.
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Bjerknees Circulation Theorem:

Kelvin’'s circulation theorem tells us about the change of absolute
Circulation. But it is more important to know about the change of circulation with
respect to the earth. Hence it is more important to know the change of relative
circulation.
Bjerkness circulation theorem tells us about the change in relative
circulation
According to Bjerkness circulation theorem, we have

dC, _dC, 588 (C1.14)

dt dt dt

Proof: We know that, V, =V + QxT.
= §V,.dl =fV.dl + §(Cx )l
=C,=C, + J‘J‘? x (QxF).Ads (Stoke’s theorem used for 2™ line integral)
S
=C, =C, +[[2Q.Ads
S
Now, Q.ﬁ=‘§“ﬁ|cos(ﬁ, A) = Qsing, where, ¢ is the latitude of the area

element dsand Q = ‘ﬁ‘

Hence, = C, =C, +2Q([ dsSing = 205,
S

Where, S, = [dS, = [dS Sing

and ds Sing is the area of the projection of ds on the equatorial plane.

The first term ddcta , have already been discussed in the Kelvin’s circulation

theorem. Now we shall discuss the 2" term -2Q dth )

Considering the effect of the 2" term independently the Bjerkness
circulation theorem gives us
C,,—C,, =-2Q(S,Sing, —S,Sing) .......ceevevvvneiennnn...(C1.15)

Where C,, = Initial relative circulation;
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C, = Final relative circulation

S, = Initial area enclosed by the closed path
S, = Final area enclosed by the closed path
¢ = Initial Latitude

@, = Final Latitude

Thus the above equation tells us that the change in relative circulation
may be due to

(i) change in area enclosed by the closed path

(i) change in latitude

(iif) Non uniform vertical motion superimposed on the circulation

o Effect of the change in area enclosed by the closed path on the
change in relative circulation :

If the area 'S’ enclosed by the closed path increased from S; to S, ,
remaining at the same latitude '¢’, then the resulting change in relative
circulation is given by

C,,—-C,, =-2QSing (S, -S,) <0, since, S;>S;.

Thus Cyclonic circulation decreases as the area enclosed by the closed
circulation increases. Physically it may be interpreted as follows:

Area enclosed by a closed circulation increases if and only if the
divergence increases or convergence decreases. Then due to the Coriolis force
the stream line turn anti-cyclonically or the already cyclonically turned
streamlines turn less cyclonically. As a result of which cyclonic circulation
reduces. Similarly due to convergence when the area enclosed by the circulation
decreases, the cyclonic circulation increases.

) Effect of the change in latitude on the change in relative circulation :

Now suppose a circulation moves from a lower latitude ¢ to a higher
latitude ¢, , without any change in the area enclosed by the circulation. Then the

resulting change in the relative circulation is given by
C,,—C,, =-2QS(Sing, —Sing) <0
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Since Sing, > Sing,

Hence a circulation loss its cyclonic circulation as it moves towards higher
latitude.

Similarly it can be shown that when a cyclonic circulation moves towards
lower latitude, then it gains cyclonic circulation.

J Effect of imposition of non uniform vertical motion on the change in
relative circulation.

Now consider a different situation, when neither the area enclosed by the
circulation changes nor the cyclonic circulation moves, but non uniform vertical
motion is applied to the closed circulation. Then the inclination of the plane of
rotation of circulation with the equatorial plane changes, (shown in figure 1.6) as

a result of which S changes which leads to a change in C; This effect is

known as TIPPING EFFECT.

A possible explanation of sea/land breeze and thermally direct
circulation using Kelvin’s circulation Theorem:

Sea breeze takes place during day time when ocean is
comparatively cooler than land. Hence temperature increases towards land

and also we know that temperature decreases upward. (i.e. increased
downward). Thus the temperature gradient VT is directed downward to the
land. For the shake of simplicity we assume that pressure over land and sea is

same, but it increases downward. Hence pressure gradient V p is directed
downward. as shown in figure 1.7. Hence VpxVT gives the circulation in the
direction from Vp to VT. Also the change in circulation pattern is given by
VpxVT. Hence if initially there was no circulation, then the above mentioned
pressure and temperature pattern will generate a circulation directed from V p to

VT, which gives low level flow from ocean to land and in the upper level from

land to ocean. This is nothing but sea breeze. Similarly land breeze and any

thermally driven circulation pattern may be explained qualitatively.
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VORTICITY:

Vorticity is a micro scale measure of rotation. It is a vector quantity.
Direction of this vector quantity is determined by the direction of movement of a
fluid, when it is being rotated in a plane. Observation shows that when a fluid is
being rotated in a plane, then there is a tendency of fluid movement in a direction
normal to the plane of rotation (towards outward normal if rotated anti clockwise

or towards inward normal if rotated clockwise). Thus due to rotation in the XY
plane (Horizontal plane) fluid tends to move in the k direction (i.e. vertical), due
to rotation in the YZ plane (meridional vertical plane)fluid tends to move in the i
direction (East West) and due to rotation in ZX plane (zonal vertical plane) fluid
tends to move in the j direction (N-S).
Thus vorticity has three components. Mathematically it is expressed as
VxV =i&+ jnp+Kke ....(CL.16),

where, 5:@—@'77—8—“—%' :@_8_u ...(C1.17).

oy oz’
In Meteorology, we are concerned about weather, which is due mainly to

vertical motion and also only the rotation in the horizontal plane can give rise to

vertical motion. So, in Meteorology, by the term vorticity, only thek component

A

of the vorticity vector is understood. Hence, throughout our study only k
component is implied by vorticity.

Thus, hence forth, vorticity = ¢ :@_6_u ....(C1.18).
ox oy

Relation between circulation and vorticity:

We know that circulation and vorticity both are measures of

rotation. Hence it's natural that there must be some relation between them. We

know that, circulation is given by, C = §\7.dr
Hence, using Stokes theorem we have, C = ﬁ-ﬁi = _[.Wx(/- k-ds = ”{ds

(As in the present study, rotation is in the horizontal plane, hence, i =k )..

10
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Hence, % = ... (C1.19).Thus, vorticity is the circulation per unit area.
S

Vorticity for solid body rotation

Let us consider a circular disc, of radius ‘a’, rotating with a constant
angular velocity ® about an axis passing through the centre of the disc, as

shown in figure 1.8

Then the circulation of the disc :it;V dl =c (say)

Now tangential component of v=wa

And [dI| = adg

S.Cc= J.Zﬂaza) do = aza)r”dé’ =2ra’w
0 0

27 a’w B

Vorticity= Circulation/Area = 5

2 ®....(C1.20)
Tra

Thus for Solid body rotation, the vorticity is twice the angular velocity i.e.
2 o.
Relative vorcity and the Planetary Vorticity
Relative vorticity = K-VxV, =¢ = y_u
oX oy

To understand the Planetary Vorticity, we consider an object placed

at some latitude on the earth’s surface. Consider the meridional circle passing
through the object shown in figure 1.9

Then as the Earth rotates about its axis, the object executes a
circular motion (dashed circle in the fig) with radiusacos¢ .

Now the Circular motion executed by the object is analogous to the
solid body rotation. Hence the vorticity of the object = 2 x local vertical
component of angular velocity = 2QSing = f .

Now this vorticity is solely due to the rotation of the planet earth. Hence it
is known as planetary vorticity. It is to be noted that it is also the coriolis

parameter.

11
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Sum of relative vorticity and planetary vorticity is known as absolute
vorticity and is denoted by ‘Z,’
Hence ¢,=¢+f..... (C1.21)

Relative vorticity in natural co-ordinate:

In natural co-ordinate (s,n,z), we know ?s(f£+ﬁi+§£j,
os  on 0z

where, t,A,k are unit tangent, unit normal and unit vertical vector respectively.

Hence, the relative vorticity is given by

g:ﬁ.(f3+ﬁi+|23jxvf=vl< N (C1.22)
oS on oz on

Where, vis the tangential wind speed, K, is the streamline curvature and

il is the horizontal wind shear across the stream line. The first term vK, of the
n

L . ov .
above expression is known as curvature vorticity and the second term _6_IS
n

known as Shear vorticity.

Potential vorticity

To understand the concept of Potential vorticity, first we may refer
to the popular circus play, where a girl is standing at the centre of a rotating disc.
As the girl stretches her arm, the disc rotates at a slower rate and as she
withdraws her arms the disc rotates at a faster rate. Generally this example is
referred in solid rotation to illustrate the conservation of angular momentum. This
example hints us to search a quantity in the fluid rotation, which is analogous to
the angular momentum in solid rotation.

For that we consider an air column of unit radius. Now, consider
that the air column shrinks down i.e. its depth decreases. As it shrinks down, its
radius increases and then as per the above example column will rotate at a
slower speed. Also if the air column stretches vertically i.e. if its depth increases,

then its radius decreases and rate of rotation increases

12
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So, it's clear that the rate of rotation of the air column increases or
decreases as its depth increases or decreases.
Thus for a rotating air column, we can say that the rate of rotation is
proportional to the depth of the air column.
Now for fluid motion rate of rotation and vorticity are analogous
Vorticity oc  Depth
Vorticity/Depth = constant
Thus in the fluid rotation the quantity (Vorticity/Depth) remains constant as
in the solid rotation angular momentum remains constant. So this quantity is
analogous to the angular momentum. It is known as potential vorticity.
Therefore, Potential vorticity of an air column

_ Absolute vorticity _ + f
Depth h

...... (C1.23)

THE VORTICITY EQUATION:

This equation tells us about change in vorticity and the possible
mechanisms for vorticity production or destruction. This equation is derived from
the equation of horizontal motion.

Horizontal equation of motion may be re-written as

V _ _ ~ V, =
N, =-V,K, —lva—(g”ij)kaH —WaaH +F ... (C1.24)
o) z

Performing (IZ.?H x ) on both sides of (C1.24), we obtain,

96 g YuP VP g s kx| kT xw K, <F
ot o, 0z

To simplify the 2" and 3" terms on the RHS of above equation, we use

the following two vector identity
V, x(@xb)=(V,b)a-(b.V,)a-(V,.ab+(@EV,)b
and, V,, x(1d) =(V,4)xa+ (v, x4

Hence the 2" and 3" terms are respectively

13
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~Dy s+ F)= (V. V) + f),and
K. ﬁHWXaVH + WKV, « Nu ﬁHWXaVH +W£(I€.§H <V, ) =K. ?HWXav—H cw
oz 0z oz oz oz oz

respectively, where, D, =V, V, . Hence, the vorticity equation may be written as
jt(g+f):—DH(§+f)+;(g§'25—g’yog§j—@)’:’g‘z’—zgj+[§_2'?) ..... (C1.25)
The term on the LHS indicates the production/destruction of absolute vorticity
and the terms on the RHS indicates possible mechanisms responsible for that.
The terms on the RHS are respectively called

1) Divergence term (2) Solenoidal term

2) Tilting term and (4) Frictional term

Divergence term:-

This term explains the effect of divergence/convergence on the

production/destruction of vorticity. If there is divergence then, D, >0. Hence

considering only the effect of this term we have,
%(g + f)<0=(¢c+ f), The absolute vorticity decreases with time.

Thus divergence cause cyclonic vorticity to decrease or anti cyclonic
vorticity to increase. This can be explained physically also. Due to divergence,
the stream line turns anti cyclonically or cyclonic turning, exists already,
decreases by the effect of Coriolis force. It is shown in figure 1.10.

Similarly, it can be shown that due to convergence [when D < 0]

(p+ f) decreases. Thus due to convergence cyclonioc vorticity increases.

Solenoidal term:-

As explained in the context of circulation theorem, here also
solenoidal term signifies the contribution of the baroclinic effect of atmosphere
towards the production or destruction of absolute vorticity.

Let us consider the first term in the solenoidal term, the

14



Lecture notes on Dynamic Meteorology prepared by Somenath Dutta for Advanced (Revised)
Meteorological training course-Phase II.

Now as per the equation there will be generation of cyclonic vorticity if

% >0 and P» > 0. Now question is what is the physical mechanism for that.

OX
Consider the adjoining figl.11. In this figure a rectangular
horizontal plane has been considered, which has been divided into two parts,

Eastern part having more density (p) than the western part.

In conformity with the condition Z—p >0. We also consider that

X

.. . 0 .
pressure is increasing towards north (- Ep >0) . Hence Pressure gradient force

is directed from North south. Since PGF:—E%D, hence the western part of the
Yo

plane will be exerted by a higher PGF than the eastern part. This difference in

PGF creates a torque which makes the plane to rotate in an anticlockwise

direction. as shown in this figure. Thus cyclonic vorticity is generated.

Similarly the other term, can also be explained.

Tilting term:
This term explains the generation or destruction of the vertical

component of vorticity by the tilting of horizontal vorticity due to non uniform

vertical motion.

_ OW oV oOw du
Tilting term:- - — ———- =
OX 071 oy oz
We consider the first term, _ow v
OX 0z
ov oW - .
If 8_<O and 6_<0’ then from the vorticity equation it appears
Z X

that there will be a decrease in the cyclonic vorticity, because

15
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d OW oV
—(c+f)=—"—-—x<0.
dt(g ) OX 0z

To understand the mechanism, we refer the figures 1.11 & 1.12. In

figurel.11 we have depicted the situa‘rionéﬂ <0. This creates a cyclonic rotation
z

in the YZ plane only, i.e. initially we have only i component (&) of the vorticity

with vortex axis directed towards east. In figurel.12 we have shown the effect of
imposing ;ﬂ< 0 i.e. upward motion more to the west and it is less to the east.
X

Due to this non-uniform distribution of vertical motion, initially west east oriented
vortex axis i.e. the vorticity vector will be tilted as shown by dashed lines in fig
1.12. And in the new position, the vorticity vector may be resolved into two

components, viz. the east ward component and the vertically down ward
component. Initially the vertical (12) component () of the verticity was zero, but
finally we have a vertical component (¢ ) in the negative direction. Thus cyclonic

vorticity has been changed (here reduced).

Hence the change in the cyclonic vorticity due to tilting of horizontal
vorticity is explained.

Frictional term:

It is clear that presence of friction makes the flow non-geostrophic.
Hence flow can no longer be parallel to isobars. So there must be a cross
isobaric component of flow from high pressure to low pressure as shown in
figurel.13.This is known as frictional convergence. Again this convergence, by

the virtue of divergence term, in turn generates cyclonic vorticity.

16
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Scale analysis of vorticity equation:
What is scale analysis?

Before that we should have a clear concept about ‘Order of magnitude’.

Suppose that the observed wind speed is between 6 m/sec to 50
m/sec, then we say order of magnitude of observed wind speed is 10 m/sec.

Ranges of Order of
values(m/s) Magnitude(m/s)

1-5 10°

6-50 10

51-500 102

501-5000 10°  etc.

Scale analysis is a convenient technique to compare the relative order of
magnitude of individual terms of governing equation, from the knowledge of the
order of magnitude of field variables, then retaining only the terms with highest
order of magnitude discarding others and their by simplifying the governing

equation.
For performing scale analysis the following steps are to be taken:

i) Typical order of magnitude of the individual field variables.
(likeu,v, T, p, X,y etc) are found out from the field observations.

i) Then the relative orders of magnitude of the individual term
of governing equations are found out.

iii) Only the terms with highest order or magnitude are retained
and others are discarded.

Scale analysis of the vorticity equation:

First term of the LHS of vorticity equation may be expanded as

96, 9 98 o ot

a VTV a Ny

L, L 0p b owiu_wau | OF, oF,
YT Ty Ty ) e ) T ey (RS

17
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Following all the necessary steps of scale analysis, we find that the terms

o oL o oL

—,v—=,w—=on the LHS of vorticity equation and the only term
ot ox oy oz

- f(%+%) on the RHS are having order of magnitude, 10'°Sec” Sec and

all the other terms are having order of magnitude less than ~ 10™°Sec™.

Hence following the principle of scale analysis we can retain only

those terms with order of magnitude 107'°S™ and other terms may be
discarded.

Hence the vorticity equation may be simplified into

%+u%+v%=—f(a—u ov

ot x oy ax+5)_vﬂ

Where p=—

6—4:—[ua—§+va—§+vﬁ]— f(a—u+@)
ot OX oy oX oy
Vorticity  advection of Horizontal div.
Tendency relative vorticity
By hori. wind

%?\/—H’-V_H’(mf)—f(DH) ...................... (C1.26)

This equation is very much useful to explain the divergence pattern
on different sectors of Jet core and also to explain the divergence pattern
associated with trough

Question.: Why divergences occur to the ahead of a westerly trough?

For that first write the above equation (C1.26).

% V€ D= 1(D)

Under steady state condition, % =0.
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~Vu Vi (g+ 1)
f

called advection of vorticity. It may be +ve (cyclonic) or —ve (anticyclonic)
accordingly as wind is coming from the source of cyclonic vorticity or anticyclonic
vorticity. If in a region wind comes from a source of cyclonic vorticity, then in
that region cyclonic vorticity is brought and on the other hand if in that region
wind comes from a source of anticyclonic vorticity, then in that region anticyclonic
vorticity is brought.

Now we consider a typical stationary westerly trough (figure 1.14).
Consider a region (C) behind the trough and the region (D) ahead of the trough.
In the region (D) winds are coming from the trough, a source of cyclonic vorticity.
Hence in this region advection of cyclonic vorticity is taking place.

Hence —\Z-ﬁ(g + f) > 0.Hence in this region,
fD, ==V, -V, (C+f)>0.
~.Dy >0, implying that at 300 mb divergence takes place in this region.

Hence low pressure area forms at the surface area ahead of an upper air trough.

Similarly in (C) region winds coming from a ridge, a source of anticyclonic
vorticity, hence anticyclonic vorticity advection takes place over this region.
Hence in this region

“V, V. (C+1)<0; so  f(D,)=-V, Va(+f)<0

. Now the denominator of this expression is

Hence, D, =

-.Dy <0, so there is convergence behind the trough at 300 hPa,
so high pressure area forms at the surface behind an U.A. trough.

We shall discuss the divergence pattern in different sectors of Jet Stream.
To discuss the divergence pattern in different sectors of the sub-tropical westerly
jet stream, we may refer figure 1.15. In this figure four sectors have been shown
Sector | (Left exit)

In this sector we have considered two points P & Q, P being nearer
the core and Q being away from Jet core.

We compute the vorticity at these two points using natural co-
ordinate. In the natural co-ordinate system, vorticity ¢ is given by

§=VKS—%; K, being the Stream line Curvature, here K, =0 as the

stream lines are almost straight line for Jet stream.
T
Now in this sector, at the point P = + 27.5 Unit and Q = 22.5 unit,
But the direction of wind is from P to Q ie. wind is coming from higher cyclonic
vorticity to lower cycloniv vorticity. Hence in this case advection is cyclonic
vorticity .
SV, VL (E+)>0
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- f(D,) ==V, -V, (C+f)>0.
So, D, >0

Hence divergence takes place at the Jet Core Level in the Left exit sector I.
Following a similar approach, divergence pattern in other sectors may also be
found.

Barotropic or Rossby potential vorticity:

We consider a fluid flow in an infinite channel, bounded below by the earths
surface and above by a rigid lid (for example, tropopause). For such fluid flow,
normal component of fluid at any point is zero, i.e., at any point,V, =0. Hence,

from Gauss’s divergence theorem we have, HJ‘(?V)da = ”Vn ds =0. Hence such

flow is non divergent. Hence, for such flow the scaled vorticity equation reduces

to:

d f . . . .

% =(c+ f);ﬂ. Since, the flow is non-divergent, we may ignore the effect
z

of ageostrophic part of horizontal wind. Also we consider a barotropic

atmosphere.

Under these conditions, vertical integration of the above equation from z =2z to

z=1leads to

h dc+f) dz, _di:ﬁ, where, h=z, -z, is the depth
(c+f) dt dt d dt

of the fluid. The above equation after integration with time further simplified to

ﬂ:Constant. This quantity is known as Barotropic or Rossby potential

—w(z,) - w(z,) =

vorticity. This is known as conservation of Barotropic potential vorticity.

For non-divergent flow at any level, scaled vorticity equation reduces to
dc+ f) 0

dt
absolute vorticity is known as Constant Absolute Vorticity (CAV) trajectory. It can
be shown that this trajectory is looked wave like.
Baroclinic or Ertel’s potential vorticity
To obtain an expression for Baroclinic or Ertel's potential vorticity, we start from
horizontal equation of motion in (x,y,8,t) co-ordinate.
We know that vector form of the horizontal equation of motion in isobaric co-
ordinate is given by
oV, N
ot

, Le., ¢+ f =constant. Trajectory of an air parcel conserving

V.9, V., ma(;’_;:_ﬁpm KxV, +E,

20
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and

N, (= = \~ N, N, (- - \- -0V
It can be shown that, Hilv,.V + H_~H4V,V +9—"H
at Via¥o i +o oo ot ViV 00

also it can be shown that,V,¢=V,M, where M =C,T +gz is Montgomery
stream function.

Hence, the vector form of horizontal equation of motion in isentropic co-ordinate
is given by:

vV, vV,

- +\V, Y, N, +6 H= VM Kk xV, +F, ....(CL.27)

Performing IZx% on both sides of the above equation for frictionless flow we

have, % = D,(¢, + f)....(C1.28),

where, D, ,s,are respectively the horizontal divergence and vertical component

of vorticity in isentropic co-ordinate. Again continuity equation in isentropic co-
ordinate gives, 1do =-D, .....(C1.29), where, o = g’lﬁ.

o dt 00
Combinining (C1.28), (C1.29) and then integrating with respect to time we obtain
ER =Constant. This is known as conservation of baroclinic potential vorticity

O
and the quantity on the LHS is known as baroclinic potential vorticity.
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Chapter-11
PERTURBATION THEORY

Main goal in Meteorology is to forecast the weather parameters for the future time
with the knowledge of their present value. Bjerkness (1904) had recognized this problem
of weather forecasting as an initial value problem(I1\VVP).

Initial value problem is a partial differential equation (Linear/ Non-Linear) with
time (t) as an in dependent variable.

Some Useful Concepts :

Partial derivative:

Let a quantity *S’ is dependent on X, y, z, t. Then derivative of S with respect to
any one (say t) of these four, keeping rest three unchanged, is called partial derivative of

S with respect to ‘t’. For example 24 hrs change of pressure at a place is the partial

change in pressure with respect to time. These are denoted by é,é,ﬁ,éetc.
ot ox oy oz
Examples: Let, V = x® + y® + 3axyz
oV )

Hence, 0 3x? + 3ayz (y, z have been kept constant)

X
oV )
E =3y° +3axz (z, x have been kept constant)
oV
ry = 3axy (%, y have been kept constant)

Partial differential equation (PDE):

A differential equation is an equation which involves derivative or differential of
the dependent variable. A PDE is an equation which involves partial derivatives or
differentials of the dependent variable.

EX: ua—u+vau = —£@+ fv is a partial differential equation, as it contains the

OX 6_y p OX
partial derivatives of the dependent variables u, p.

Order of a PDE :

It is the highest order partial derivatives involved in the equation.
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2 2
Ex. Consider the PDE a—l:+a—g =F(X,y).
oy
Here, uis the dependent variable, X, y are independent variables and F(x ,y) is a

known function of x,y. In the PDE the highest order partial derivative involved in this
equation is 2. So the order of this PDE is 2.

Linear and non-linear PDE :

A general form of a 2™ order PDE is given by

2 2 2
A6u+Bau o°u ou ou

5 +C 2+D—+E—+Fu=G.
OX oxoy oy OX oy

In the above equation A,B,C,D,E,F and G are called coefficients of the PDE. If all
these coefficients are constants or functions of independent variables ( x , y), then the
resulting PDE is known as a Linear PDE.

For example let us consider the following PDE:

o’u . 0°u  d‘u

> +2 +t—— =
OX oXoy oy

For this PDE A=1
B=2
C=1and

D = E = F = G=0. Hence this PDE is a Linear PDE.
We consider another PDE,
2 2 2
Za—L21+2xy du + X28_L21 = (x+Y). In this PDE, A, B, C and G are functions
OX OXoy oy

of x or y or both. So, this is also a 2™ order linear PDE.

on the other hand if at least one these coefficients
variable, then the resulting PDE is known as a non-linear PDE.
For example let us consider the following PDE:
ou ou _ 10op

U—+V—=———".
ox oy p OX

In the above equation, A=B=C=F=0,D=u

is a function dependent

and E = v. Since u, v are
dependent variables, hence it is a non-linear PDE.

Need for the perturbation theory :
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There are several method for weather forecasting, viz. synoptic, statistical,
Dynamic (Numerical weather prediction) method etc.
In the NWP, the governing equations are solved for the weather parameter, viz.
u,v,w, T, P etc.. The governing equations are non-linear partial differential equation.
Non-linear partial differential equations can not be solved exactly, as till now we don’t
have any method to get exact solution of non-linear partial differential equation.
To get rid of the above problem, there are two ways viz.,
(@) Transform the non-linear partial differential equation into ordinary
differential equation and then get exact solution.
(b) Transform the set of partial differential equations into their finite
difference form and then solve them numerically.
Discussion about (a) is beyond the scope of discussion. Now while discussing
(b), it is worth mentioning that the numerical solution of these non-linear partial
differential equation is highly sensitive to the initial conditions given, i.e. a slight change
in the initial condition may lead to an abrupt change in the numerical solution. This is
due to the presence of non-linearity in the governing equations. Perturbation theory was
proposed to remove the non-linearity from the governing equations.
Basic postulates of perturbation theory :

This theory is based on same postulates, which are given below :
I. According to this theory, the total atmospheric flow consists of a mean flow
and a perturbation superimposed on it. So, that all field variables consist of a
basic (mean) part and a perturbation part.
I1. Both the mean part and the total (mean + perturbation) satisfy the governing
equations. Mean part is the temporal and longitudinal average of the variable
as a result of which it is independent of x and t.

I1l. The magnitude of perturbation part is very small as compared to that of mean
part, so that any product of perturbations or product of their derivatives or
product of a perturbation and derivative of perturbation may be neglected.

Now, it is our task, to verify whether using the above postulates, the non-linearity
from a

term of governing equation may be removed or not.
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. . . 0
For that we consider an arbitrary non-linear term, say, ua—¢.
X

Using postulate (1), u=u+u’ and p=p+¢'.

Hence, u8—¢=(ﬁ+u')M=(G+u’) 0p 00| 399, 00 (Here,
OX OX ox  OX OX OX

2—(p =0, as per 2" part of postulate (I1)). Again using postulate (111), u’aa—(o ~ 0, being a
X X

product of perturbation quantity and its derivative.
Hence using perturbation technigque, non-linearity from the governing equations

may be removed.
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Mechanisms of pressure change
Pressure tendency equation: To derive pressure tendency equation, we shall start from
the hydrostatic approximation
op
—=—=gp . 1
o = 9r (1)
Integrating the above equation vertically from an arbitrary level z=z,t0 z=o, we

obtain,

= p(z,) = jgpdz , since, at the top of the atmosphere there is no pressure.

Now, differentiating the both sides of the above partially with respect to time, we obtain,
op 0|7t T op
—_—=— Z|=g|—dz
SIS
Again from continuity equation we have, Z—f =-V.(pV)

5/ T
E-—gz[v.(pV)dz

So, we have, . B

= _gjp(ﬁh'vh)dz + g_[(_vh'ﬁhphz +9o(zy)W(z,)
The above equation is known as pressure tendency equation. Left hand side of the above
equation represents pressure tendency at a point at level z=z,and right hand side

consists of three terms each of which representing some mechanisms for pressure change.
First term is known as divergence term. It represents net lateral divergence or
convergence across the sidewall of an atmospheric column with base at z =2z, and

extending up to top of the atmosphere. We know that pressure at z = z,is nothing but the
weight of air contained in an atmospheric column with base at z = z,having unit cross

sectional area and extending up to top of the atmosphere. Now this weight will increase
or decrease if mass of air inside this column increases or decreases. Again mass of air
inside this column increases or decreases if there is net inflow (convergence) or out flow
(divergence) of air. Hence, net lateral divergence leads to fall in pressure and net lateral
convergence leads to a rise in pressure. For synoptic scale system, this term contributes
significantly towards pressure change.

Second term expresses the net lateral advection of mass into the atmospheric
column with base at z = z,having unit cross sectional area and extending up to top of the

atmosphere. Clearly net positive advection leads to an increase in mass, which in tern
leads to rise in pressure and net negative advection leads to a decrease in mass which in
tern leads to fall in pressure.

Third term expresses flux of mass into the above atmospheric column across its
base at z = z,,.
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Movement of different pressure systems: Here we shall discuss the movement
of pressure systems (lows/highs) for different isobaric patterns. Mainly we shall discuss
Sinusoidal pattern, circular pattern and circular pattern beneath a Sinusoidal pattern
above.

Sinusoidal isobaric pattern: Let us refer to the adjoining sinusoidal pressure
pattern. Ahead of the trough there is divergence and ahead of the ridge there is
convergence at the surface. Hence fall in pressure takes place ahead of trough and rise in
pressure ahead of ridge. Due to this, after some time lowest pressure will be found ahead
of trough, as a result trough will be shifted towards east of its present location. Hence, the
pressure system will move in a westerly direction.

996

998

Fig.1

Circular low-pressure pattern: Let us consider the adjoining circular low-
pressure pattern. Lowest pressure is at the center of the circular pattern. To the north of
the center Coriolis force is higher than that to the south. As we know that Coriolis force
makes flow anticyclonic, hence cyclonic wind will be more to the south than to the north
of the center. Hence to the east of the center there is downstream decrease in wind speed
and to the west there is down stream increase in wind speed. Hence divergence takes
place to the west of the center as a result of which there will be fall in pressure to the west
of the center. Due to this, center of low after some time will be shifted to the west of its
present position. Hence net result is movement of the pressure system in an easterly
direction.
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Chapter-Ill

ATMOSPHERIC WAVES:

Wave may be defined as a form of disturbance in a medium.
When a disturbance is given to a part of an elastic medium, then
that part gets displaced from its original position. But by the virtue of elasticity, a
restoring force is developed in the displaced part, which helps it to return to its
original position. This leads to an oscillatory motion, which is known as wave.
Some useful concepts on waves:
WAVE LENGTH:

It is defined as the distance between two consecutive points on the
wave, which are in the same phase of oscillation, i.e. distance between two
successive troughs or ridges.

WAVE NUMBER:
Wave number of a wave with wave length ‘L’ is defined as the

number of such waves exist around a circle of unit radius. Hence wave number

k is defined by, k =2T7Z’ where L is the wave length.

Since a wave may travel in any direction, hence we may define
wave length / wave number for three directions, viz. along x, y and z directions.

If L,,L,and L, are respectively the wave lengths along X, y and z

directions and if k,land m are wave numbers along x, y and z directions, then

k :Z—E, I _2 and mzz—”.
L, L, L,
FREQUENCY :

It is the number of wave produced in one second.lIt is denoted by v.
PHASE VELOCITY:
We know that any disturbance behaves like a carrier. So, wave

may be thought of as a carrier. Phase velocity is defined as the rate at which
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momentum is being carried by the wave. For practical purpose, it may be taken
as the speed with which a trough / ridge moves.

It can be shown that, phase velocity in any direction = frequency / wave

number in that direction. Thus if the phase velocity vector C has components

Cx Cy, Czalong x, y and z direction, then C, =v/k,C, =v/l and C, =v/m.

GROUP VELOCITY :

It is the rate at which energy is being carried by the wave. When a single wave
travels then the energy and momentum are carried by the wave at the same rate. But
when a group of wave travel then momentum propagation rate and energy propagation
rates are different. So, in such case group velocity and phase velocity are different. Thus

if the phase velocity vector CG has components Cgx, Csy, Csz along X, y and z

ov ov ov
~—~ C.=—andC., =—.
ok’ ¢ ol “ om

direction, then Cg, =
DISPERSION RELATION :
It is a mathematical relation v = f (k,l,m) between the frequency ( v
) and wave numbers k,I,m.
Generally for any wave, phase velocity and group velocity is
obtained from the dispersion relation.

If for any wave phase velocity and group velocity are same, then it

is called a non-dispersive wave, otherwise it is a dispersive wave.

ROSSBY WAVE:

First it will be shown how conservation of absolute vorticity (C+f)
leads to wave like motion.
We consider an object placed on or over the earths surface at

latitude ‘¢’ . In the adjoining figure, a meridional circle passing through the
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object has been shown. Suppose, while motion, the absolute vorticity (+f) of
the object remains conserved. Let the object be at stationary state initially.

Then the relative vorticity ( { ) of the object is zero at the initial state. Let
f 1 be the value of planetary vorticity at the initial state. Now if the object be
displaced meridionally, then its relative vorticity will change to ; (say). If f, be

the value of planetary vorticity (f) at the final state, then we must have

of
O+fi=¢i+f,=¢ =—(f, - f))=-d :_55y:_ﬂ53’-

Hence, ¢, >0, if 8y <0, i.e., for a southward displacement and
¢, <0,if 8y >0, i.e., for a northward displacement.

So, if the object is displaced northward, then it turns anti-
cyclonically towards its initial latitude. At the initial latitude = O, but by inertia it
will continue to move southward, cross the initial latitude and acquire cyclonic
vorticity. After acquiring cyclonic vorticity, the object turns towards its original
latitude. Thus the object executes wave like motion about its initial latitude ‘@’ .
This wave is known as Rossby wave.

Thus the dynamical constraint for Rossby wave is the conservation
of absolute vorticity.

So, to obtain the dispersion relation for the Rossby wave, the governing

eqguation is conservation of absolute vorticity , i.e.

d(c+f) 0¢ &
—2 2 =0=>—2+VVc+vB=0..... 1
” o c+Vvp (1)

The above equation is linearised using perturbation method. Here we
made the following assumptions :
m  Atmosphere is auto-barotropic
m Basic flow is zonal

m  Basic zonal flow is meridionally uniform
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With these assumptions, the above governing equation may be linearised

to

og' og'
— 4+U—=2+Vv'B3=0....(2
p pw B (2

¢'is perturbation relative vorticity and v'v’ is perturbation meridional wind.

For equation (2) we seek for wave like solution, like, ()"« e'®" where,

k is the zonal wave number and cis the zonal phase velocity.

After simplification we obtain following dispersion relation , v=U k—f.
Hence phase velocity C :E =U —k—ﬂz and group velocity Cg = % =U +k—ﬂ2 .

Clearly C#C,.So, Rossby wave is a dispersive wave.

SinceC -U = —k—ﬂz, hence Rossby wave retrogates with respect westerly

B

mean flow. Again C; -U :k—2>0. Hence Rossby wave carries energy in the

downwind direction with respect to westerly mean flow. Physically the above
results may be interpreted as follows: For momentum source is the westerly
mean flow and for energy the source is the disturbance i.e., the wave.
HAURWITZ WAVE :

This wave is a generalization of the Rossby wave. Similar to
Rossby wave, this wave also results from the conservation of absolute vorticity.
To obtain the dispersion relation for this wave we take the same assumptions as
in Rossby wave except that, here we assume that the basic zonal flow ‘U’ is not
uniform in the meridional direction, rather it is a function of 'y’ (latitude) and
amplitude of this wave is zeroaty = £ d, i.e., U(z d) = 0.

Starting with the conservation of absolute vorticity, and following
the approach, similar to that, made in Rossby wave, we arrive at the following

dispersion relationship.
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2
- )"
v=UK-—>——
k24 "
4d?
Clearly if the zonal basic flow ‘U’ is uniform in the meridional

d?U Yij

>-=0 and d — . Inthat case v=UKk N .This is nothing but
z

direction, then

the dispersion relationship for Rossby wave. So, the Haurwitz wave is a
generalisation of Rossby wave.

GRAVITY WAVE
We have seen that to generate any wave always a restoring force
is required. Gravity waves are those waves, for which he restoring force is
buoyancy.

Classification of Gravity waves:

Gravity waves

External Gravity Wave Internal Gravity Wave
Can travel along the interface Can travel along the interface
between
between two fluids of different two fluids of different densities.
densities.

Cannot travel across the fluid. Can also travel across the fluid.
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Vertical scale is negligible Vertical scale is comparable to
the

Compared to horizontal scale horizontal scale of motion

of motion

Eg. Sea waves, Tsunami Eg. Mountain wave, etc.

EXTERNAL GRAVITY WAVE (EGW)

To study the external gravity wave, we consider two different fluids
of densities p, and p, (p, > p,) placed one over the other. In the undisturbed
condition their interface is a plane surface whose vertical section is a horizontal
line as shown in figure 3(a). Now if any perturbation is given to the interface,
then it would no longer be a plane surface, rather a wavy surface. Its vertical
section would be a wave as shown in fig. 3(b). To study this wave, we consider
wave motion in the x-z (Zonal-vertical) plane, as shown in fig. 3(c).

The governing equations are:

. u-momentum equation,

o continuity equation.

These equations are linearized using perturbation method. Then
wave like solution is sought for the perturbation height of the interface. Then

after simplification we obtain the following dispersion relation.

v =Uk £k /gHA—p, where, H is the mean depth of the free surface,
P1

Ap=pi-p,.
Now if we take air over ocean water, then definitely p,>> p, and

Ap=p,-p,~ p,, andin that case v =Uk £k ,/gH

Hence, phase speed C =E= U+.gH
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And group velocity Cg =Z—:=U +./gH .

Hence C = Cg

So, EGW is a non-dispersive wave.
Here ,/gH is known as shallow water gravity wave speed and U

is known as Doppler shift.

Internal gravity wave (IGW) :

To study IGW we consider, for simplicity, a flow which is,

. 2-D (x-2)
° Adiabatic

° Frictionless
° Non — rotational
. Boussinesq.

The governing equations are:

U-momentum equation

. W-momentum equation

Continuity equation

Energy equation under adiabatic condition.
The above equations are linearised using perturbation method.

The linearised form of the above equations are :

' Gow_ 1op
ot OX Po OX

ow'  —ow' 1 op' o'
_ U - = " 4 g _
ot OX P, OZ 6,



Lecture notes on Dynamic Meteorology prepared by Somenath Dutta for advanced (old) meteorological
training course.

ou’"  ow'

+ — =
oX 01
08" —00'

—+U—=0
ot OX

0

Wave solutions, for the perturbations in the above equations are sought.

Wave solutions are like expli(kx + mz —vt)]

Then after same simplifications we obtain the following dispersion
relationship
Nk

JkZ+m?

vy =Uk +

Phase velocity :

X-Component of phase velocity C, = Y_U+ N :

k k?+m?
Z-Component of phase velocity C, = Y Uk + Nk

m m myk®+m?

Group velocity:

X-Component of group velocity Cg, =~ =U + ————
8k k2 + mz
Z-Component of group velocity C, = Z_r: _ —(i Lmzj |

Now we consider a special case for U =0

Thenc, =+— % ang C(N_km]

Jk? +m?
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Thus it follows that for a given combination of signs of k,I,; C, and C, are

opposite to each other. Thus vertical phase propagation (momentum
propagation) and group propagation (energy propagation) by IGW are opposite

to each other.

Also from the above expressions of C’'s and Cg ‘s it follows that the vector

C= iC, + ]CY is perpendicular to the phase lines kx+ mz —vt = constant, where

as the vector Cg=iCq +|Cs is parallel to the phase lines

kx + mz — vt = constant.

Hence for the IGW, phase velocity and group velocity are
perpendicular to each other.

Importance of IGW:

IGW, although, is generated at lower troposphere, they can transport
energy, momentum etc upto a great height. From the expressions for phase
velocity and group velocity, it is seen that a vertically propagating IGW extracts
Westerly Momentum from the mean flow at upper level or imparts easterly
momentum to the mean flow at upper level.

IGW is believed to be one of the causes responsible for QBO. CAT is

believed to be also due to continuous extraction of momentum from upper level
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Chapter-1V
Planetary Boundary Layer (PBL)

A Brief essay on PBL.:

PBL is the lower most portion of the atmosphere, adjacent to the earth’s surface, where maximum
interaction between the Earth surface and the atmosphere takes place and thereby maximum exchange of
Physical properties like momentum, heat, moisture etc., are taking place.

Exchange of physical properties in the PBL is done by turbulent motion, which is a characteristic
feature of PBL. Turbulent motion may be convectively generated or it may be mechanically generated.

If the lapse rate near the surface is super adiabatic, then PBL  becomes  positively = Buoyant,
which is favourable for convective motion. In such case PBL is characterized by convective turbulence.
Generally over tropical oceanic region with high sea surface temperature this convective turbulence occurs.

If the lapse rate near the surface is sub adiabatic then the PBL is negatively buoyant and it is not
favourable for convective turbulence. But in such case, if there is vertical shear of horizontal wind, then
Vortex (cyclonic or anti cyclonic) sets in, in the vertical planes in PBL, as shown in the adjacent fig 2b.
This vortex motion causes turbulence in the PBL, known as mechanical turbulence.

If the PBL is positively buoyant as well as, if vertical shear of the horizontal wind exists, then both
convective and Mechanical turbulence exits in the PBL. The depth of the PBL is determined by the
maximum vertical extent to which the turbulent motion exists in PBL. On average it varies from few cms
to few kms. In case of thunderstorms PBL may extend up to tropopause.

Generally at a place on a day depth of PBL is maximum at noon and in a season it is maximum
during summer.

Division of the PBL into different sub layers:

The PBL may be sub divided into three different sections, viz viscous sub layer, the surface layer
and the Ekmann layer or entrainment layer or the transition layer.

Viscous layer is defined as the layer near the ground, where the transfer of physical quantities by

molecular motions becomes important. In this layer frictional force is comparable with PGF.
The surface layer extends from z = Z, (roughness length) to Z = Z_with Z, the top of the surface

layer, usually varying from 10 m to 100 m. In this layer sub grid scale fluxes of momentum (eddy stress)

and frictional forces are comparable with PGF.
The last layer is the Ekmann layer is defined to occur from Z_ to Z; , which ranges from 100 m or

so to several kilometers or more. Above the surface layer, the mean wind changes direction with height
and approaches to free stream velocity at the height z as the sub grid scale fluxes decrease in magnitude. In

this layer both the COF and Eddy stress are comparable with PGF.



Boussinesq approximation: According to this approximation density may be treated as constant
everywhere in the governing equations except in the vertical momentum equation, where it is coupled
with Buoyancy term. Physically this approximation says that the variation of density in the horizontal

direction is insignificant as compared to that in the vertical direction.

Governing equations in the PBL: Governing equations in the PBL, following adiabatic and Boussinesq

approximation, are given below:
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Concepts of mean motion and eddy motion in the PBL & Reynolds averaging technique.

In the PBL both the mean motion and the eddy motion are very important. Hence it is
required to have equations for both motion.
To distinguish these two, Reynold devised an averaging method, which is discussed

below:

Let us consider any field ‘S ’at a synoptic hour T. Let S, bet he observed value of

S’ at time T hrs. Now to find out the contribution from mean and eddy motion towards S ’, we have to

T T
take a number of observations of S * during the time interval (T - 5 T+ Ej Suppose during the above

1T
2
_ 1
period we have ‘n’ observations. Viz., S,,S,,.....,S,0f S. Then S = J‘S dt = —z S, is called the
T-Z N
2

mean part of ‘S’ at T, and S’ = (S S) is called the eddy part of S at time T hrs. This Eddy part is

obs



due to turbulent eddy motion in the PBL. The quantity ‘t’ is called averaging interval. While choosing ‘t’
the following precautions are necessary to take:
a) It should not be too small to miss the trend in mean motion.

b) It should not be too large that eddies filtered out.

For two arbitrary quantity, say, a and B, we have, a=a +a’' andff =L+’ . Hence,

af =a, ,E + o' The last term is known as eddy co-variance.

Concept of Eddy flux and Eddy flux divergence/ convergence:

Flux of any field refers to the transport of that field in unit time across unit area. Hence flux of a

field, say S, is 8\7 , vV being wind velocity.

Eddy flux, thus refers to the transport of some field by eddy wind. If U’,Vv’,W'are the
components of eddy wind, then eddy wind vector is given by\7' = (fu "+ jV' +kw") , then eddy flux of a

quantity SisSV .

Flux divergence/convergence physically refers to the dispersion or accumulation of the field after

being transported. Mathematically it is expressed as 6(5\7 .

In the mean equations of motion some new terms have appeared.

These terms are known as eddy flux convergence of eddy momentum. Physically they may

interpreted as follows:

Let us consider, the eddy zonal momentum (U") is being transported by all the three components
u’,v’, W' of eddy wind. Now eddy zonal momentum transported by these components in unit time across
. . It N4 £ !
unit area are respectively U'U’,u’v’ and u'w’.
The first one is along | direction, second one in | direction and third one in K direction. Thus at
any point transport of U’ may be expressed as the vector (u v ').
After being transported, the eddy U momentum is being accumulated, which is expressed as

- ?(u '\7'). This term is called eddy flux convergence ofU’. Thus, this much eddy zonal momentum is

being added to the existing mean zonal momentum u, causing a change in u. Thus this term has appeared in



the zonal momentum equation for the mean flow. Similarly one can argue for the existence of the other

eddy flux convergence terms.

Governing equations for mean motion: To obtain the equations for mean flow, we first need to express

terms like, (V.V)U in flux form.

We know that, (V V)U = (UV) UVV . Again following Boussinesq approximation, VV = 0.

Hence, (\7?),1 :6.(u\7):§.l(ﬁ+u (\/ +V ) V( )+V(—V ’)+ ﬁ.(u’\?)+§.(u’\7')

Taking Reynolds average, we have,

Vb =v(av ) v uv')

Againa—u=a—u+a—u=a—u and, a—u+§(—\7) a—u+(\7§)j+ﬁ(§\7)=a—u+(\7ﬁ)j
o4 o o ot ot ot ot

Hence, the governing equations for mean flow are

6_U+(\7ﬁ)j:_L@+ fV+F, —ﬁ.(u'\7’) ....... (4.6)
ot Py OX
(\/ )7 - _fU+F ?( 4V ) ........ 4.7)

ot P, 0Z 0,
8‘9 V.V =-v. (6\/ ) .(4.9)
at

VN =0...(4.10)

Turbulent Kinetic Energy Equation

Turbulent Kinetic Energy equation is obtained from the equations of motion , in component form, for

turbulent motion, which can be obtained by subtracting equations 4.6, 4.7 & 4.8 from 4.1, 4.2 & 4.3
respectively. Then the subtracted equations are multiplied by U', V', W’ respectively, then they are

added and then taking Reynolds average we obtain required TKE equation

A(TKE)

p =MP+BPL+TR—-¢...... (4.11)



Where, BPL =

) N
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I WO =-N>EW,and MP =—(w'\7'
0,
Here, BPL stands for Buoyancy production or loss, MP stands for Mechanical production, N % stands for

square of Brunt-Vaisalla frequency and f' is eddy vertical displacement. TR stands for redistribution by

transport and pressure forces and € represents frictional dissipation which is always positive reflecting the
dissipation of the smallest scale of turbulence by molecular viscosity.

In our introduction we have mentioned that generally turbulence in PBL is either convectively or
mechanically generated.

Now we shall see that, for convectively generated turbulence, through BPL term eddies are being
supplied K.E.

Effect of Buoyancy production or loss (BPL) term : To examine, the effect of this term, we
shall consider three conditions viz., When atmosphere is stably stratified, When atmosphere is unstably
stratified and When atmosphere is neutrally stratified.

First of all we must note that eddy co-variance between eddy vertical velocity and vertical

displacement must be positive, as the former one must be upward or downward if the later is so. If the
Atmosphere is stably stratified, then we know that N ® s positive. Hence in that case BPL must be
negative. Thus convective turbulence is suppressed in a stably stratified PBL. Similarly one can show that
in an unstably stratified PBL ( N ’< 0), BPL is positive and convective turbulence is sustained. Finally if

the PBL is neutrally stratified, then N ’=0.SoBPL = 0, hence Convective turbulence is neither generated

nor sustained.
Effect of Mechanical Production (MP) term:

In the introduction it was shown qualitatively that Mechanically generated turbulence can occur

only if there is a vertical shear (either cyclonic or anticyclonic) of the horizontal wind.

Now we can discuss the MP term and see how it is significant for mechanically generated
turbulence. First term of MP represents the vertical eddy flux of eddy horizontal momentum and the second
one is vertical shear of eddy horizontal momentum (i.e., vertical gradient of the components of mean
horizontal wind). Qualitatively one can argue that if the vertical gradient of any quantity is positive (i.e.,
upward), then eddy transport of that quantity has to be downward and the vice-versa. Thus we see that
vertical gradient of the mean and vertical eddy transports are opposite to each other. As a result of which
MP is always positive, provided there is a vertical shear of mean horizontal wind. Hence in any case, due to
MP term TKE increases with ti